\([\text{Trivial}]_{1,1}^{1}\) |
1 |
1. |
data |
|
|
|
|
|
\([ℤ_2]_{1,1}^{1}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{1,1}^{2}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{1,2}^{1}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{1,2}^{2}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{2,1}^{1}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{2,1}^{2}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{2,2}^{1}\) |
2 |
2. |
data |
|
|
|
|
|
\([ℤ_2]_{2,2}^{2}\) |
2 |
2. |
data |
|
|
|
|
|
\([\text{Fib}]_{1,1}^{1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Fib}]_{1,2}^{1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Fib}]_{2,1}^{1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Fib}]_{2,2}^{1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Ising}]_{1,1}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,1}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,2}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,2}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,3}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,3}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,4}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,4}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,1}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,1}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,2}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,2}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,3}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,3}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,4}^{1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,4}^{2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{1,1}^{1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{1,2}^{1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{1,3}^{1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{2,1}^{1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{3,1}^{1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{1,1}^{1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{1,2}^{1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{2,1}^{1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{2,2}^{1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{3,1}^{1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{3,2}^{1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([ℤ_3]_{1,1}^{1}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{1,1}^{2}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{1,2}^{1}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{1,2}^{2}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{1,3}^{1}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{1,3}^{2}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{2,1}^{1}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{2,1}^{2}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{3,1}^{1}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_3]_{3,1}^{2}\) |
3 |
3. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,2}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,2}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,3}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,3}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,4}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,4}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{1,4}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,2}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,2}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,2}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,2}^{4}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,3}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,3}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,3}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,4}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,4}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,4}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,5}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,5}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,5}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,5}^{4}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,6}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,6}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{2,6}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{3,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{3,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{3,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{4,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_2\times ℤ_2]_{4,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,1}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,1}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,2}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,2}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,3}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,3}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,4}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,4}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,1}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,1}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,2}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,2}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,3}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,3}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,4}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,4}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,1}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,1}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,2}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,2}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,3}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,3}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,4}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,4}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,1}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,1}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,2}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,2}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,3}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,3}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,4}^{1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,4}^{2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{1,1}^{1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{1,2}^{1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{1,3}^{1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{2,1}^{1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{3,1}^{1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{PSU}(2)_6]_{1,1}^{1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{PSU}(2)_6]_{2,1}^{1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{1,1}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{1,2}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{1,3}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{2,1}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{2,2}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{2,3}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{2,4}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{3,1}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{3,2}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Fib}]_{3,3}^{1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{1,1}^{1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{1,2}^{1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{2,1}^{1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{2,2}^{1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{3,1}^{1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{3,2}^{1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([ℤ_4]_{1,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,2}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,2}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,2}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,3}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,3}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,3}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,4}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,4}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{1,4}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,2}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,2}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,2}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,3}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,3}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,3}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,4}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,4}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{2,4}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{3,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{3,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{3,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{4,1}^{1}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{4,1}^{2}\) |
4 |
4. |
data |
|
|
|
|
|
\([ℤ_4]_{4,1}^{3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\text{Potts}]_{1,1}^{1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{1,1}^{2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{2,1}^{1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{2,1}^{2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{3,1}^{1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{3,1}^{2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{4,1}^{1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Potts}]_{4,1}^{2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{1,1}^{1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{2,1}^{1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{3,1}^{1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{4,1}^{1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,2}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,2}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,3}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,3}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,4}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,4}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,2}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,2}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,3}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,3}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,4}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,4}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,2}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,2}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,3}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,3}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,4}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,4}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,5}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,5}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,6}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,6}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,2}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,2}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,3}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,3}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,4}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,4}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,5}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,5}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,6}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,6}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,1}^{1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,1}^{2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,2}^{1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,2}^{2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,1}^{1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,1}^{2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,2}^{1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,2}^{2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{1,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{1,2}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{1,3}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{2,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{3,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{4,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{5,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{6,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{7,1}^{1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( S_4)]_{1,1}^{1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\text{Rep}( S_4)]_{2,1}^{1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{1,1}^{1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{1,2}^{1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{2,1}^{1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{2,2}^{1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{1,1}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{1,2}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{2,1}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{2,2}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{3,1}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{3,2}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{4,1}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{4,2}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{5,1}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{5,2}^{1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{1,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{1,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{2,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{2,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{3,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{3,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{4,1}^{1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_4)]_{4,1}^{2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{1,1}^{1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{1,1}^{2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{2,1}^{1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{2,1}^{2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo Rep}( S_4)]_{1,1}^{1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\text{Pseudo Rep}( S_4)]_{2,1}^{1}\) |
5 |
24. |
data |
|
|
|
|
|
\([ℤ_5]_{1,1}^{1}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,1}^{2}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,1}^{3}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,2}^{1}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,2}^{2}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,2}^{3}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,3}^{1}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{1,3}^{2}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{2,1}^{1}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{2,1}^{2}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{2,1}^{3}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{3,1}^{1}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{3,1}^{2}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_5]_{3,1}^{3}\) |
5 |
5. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,1}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,2}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,2}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,2}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,2}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,3}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,3}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,3}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,3}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,4}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,4}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,4}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,4}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,5}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,5}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,5}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,5}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,6}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,6}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,6}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,6}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,7}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,7}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,7}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,7}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,8}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,8}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,8}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{1,8}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,1}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,2}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,2}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,2}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,2}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,3}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,3}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,3}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,4}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,4}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,4}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,5}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,5}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,5}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,6}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,6}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{2,6}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,1}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,2}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,2}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,2}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,2}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,3}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,3}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,3}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,4}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,4}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,4}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,5}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,5}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,5}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,6}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,6}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{3,6}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{4,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{4,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{4,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{4,1}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{5,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{5,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{5,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{6,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{6,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([ℤ_2\times \text{Ising}]_{6,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,2}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,2}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,3}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,3}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,4}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,4}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,5}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,5}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,6}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{1,6}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,2}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,2}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,3}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,3}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,4}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,4}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,5}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,5}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,6}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{2,6}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{3,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{3,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{4,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{4,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{5,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{5,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{6,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.ℤ_2\times \text{Rep}(D_3\right)]_{6,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,1}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,1}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,2}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,2}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,3}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,3}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,4}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,4}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,5}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,5}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,6}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,6}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,7}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,7}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,8}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{1,8}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,1}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,1}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,2}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,2}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,3}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,3}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,4}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,4}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,5}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,5}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,6}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,6}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,7}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,7}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,8}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{2,8}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,1}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,1}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,2}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,2}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,3}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,3}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,4}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,4}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,5}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,5}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,6}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,6}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,7}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,7}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,8}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{3,8}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,1}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,1}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,2}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,2}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,3}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,3}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,4}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,4}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,5}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,5}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,6}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,6}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,7}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,7}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,8}^{1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{TriCritIsing}]_{4,8}^{2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{1,1}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{1,2}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{1,3}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{1,4}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{1,5}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{1,6}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{2,1}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{2,2}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{2,3}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{2,4}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{2,5}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{Rep}( D_3)]_{2,6}^{1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,1}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,1}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,2}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,2}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,3}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,3}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,4}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,4}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,1}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,1}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,2}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,2}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,3}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,3}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,4}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,4}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,1}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,1}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,2}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,2}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,3}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,3}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,4}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,4}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,1}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,1}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,2}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,2}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,3}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,3}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,4}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,4}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,1}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,1}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,2}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,2}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,3}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,3}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,4}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,4}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,1}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,1}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,2}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,2}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,3}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,3}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,4}^{1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,4}^{2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{1,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{1,2}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{1,3}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{1,4}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{1,5}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{2,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{3,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{4,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( ℤ_3\rtimes D_3)]_{5,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,2}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,3}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,4}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,5}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{2,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{3,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{4,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{5,1}^{1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{1,1}^{1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{1,1}^{2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{2,1}^{1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{2,1}^{2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{3,1}^{1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{3,1}^{2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{4,1}^{1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{4,1}^{2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{1,1}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{1,2}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{1,3}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{1,4}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{2,1}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{2,2}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{2,3}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{2,4}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{3,1}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{3,2}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{3,3}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{3,4}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{4,1}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{4,2}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{4,3}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{4,4}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{5,1}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{5,2}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{5,3}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{5,4}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{6,1}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{6,2}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{6,3}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \times \text{PSU}(2)_5]_{6,4}^{1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{1,1}^{1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{1,2}^{1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{2,1}^{1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{2,2}^{1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{1,1}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{1,2}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{2,1}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{2,2}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{3,1}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{3,2}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{4,1}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{4,2}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{5,1}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{5,2}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{6,1}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{6,2}^{1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([D_3]_{1,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{1,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{2,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{2,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{3,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{3,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{4,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{4,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{5,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{5,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{6,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{6,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{1,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{1,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{1,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{2,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{2,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{2,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{3,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{3,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{3,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{3,1}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{4,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{4,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{4,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{5,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{5,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{5,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{6,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{6,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{6,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\text{Id}}]_{6,1}^{4}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,2}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,2}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,2}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,3}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,3}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,3}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,4}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,4}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,4}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,5}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,5}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,5}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,6}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,6}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,6}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,7}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,7}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,7}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,8}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,8}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{1,8}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{2,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{2,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\text{Id}}]_{2,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,2}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,2}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,3}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,3}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,4}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,4}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,5}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,5}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,6}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,6}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,2}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,2}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,3}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,3}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,4}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,4}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,5}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,5}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,6}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,6}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{3,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{3,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{4,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{4,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{5,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{5,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{6,1}^{1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{6,1}^{2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{1,1}^{1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{1,1}^{2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{2,1}^{1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{2,1}^{2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{HI}( ℤ_3)]_{1,1}^{1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\text{HI}( ℤ_3)]_{2,1}^{1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\text{HI}( ℤ_3)]_{3,1}^{1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\text{HI}( ℤ_3)]_{4,1}^{1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([ℤ_6]_{1,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,1}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,1}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,2}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,2}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,2}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,2}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,3}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,3}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,3}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,3}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,4}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,4}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,4}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,4}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,5}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,5}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,5}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,5}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,6}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,6}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,6}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{1,6}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,1}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,1}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,2}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,2}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,2}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,2}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,3}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,3}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,3}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,3}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,4}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,4}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,4}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,4}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,5}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,5}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,5}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,5}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,6}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,6}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,6}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{2,6}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{3,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{3,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{3,1}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{3,1}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{4,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{4,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{4,1}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{4,1}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{5,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{5,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{5,1}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{5,1}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{6,1}^{1}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{6,1}^{2}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{6,1}^{3}\) |
6 |
6. |
data |
|
|
|
|
|
\([ℤ_6]_{6,1}^{4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\text{MR}_6]_{1,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{1,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{1,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{2,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{2,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{2,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{3,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{3,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{3,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{4,1}^{1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{4,1}^{2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{4,1}^{3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{1,1}^{1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{1,1}^{2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{2,1}^{1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{2,1}^{2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{3,1}^{1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{3,1}^{2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{4,1}^{1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_5)]_{4,1}^{2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,1}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,1}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,2}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,2}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,3}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,3}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,4}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,4}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,5}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,5}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,6}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{1,6}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,1}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,1}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,2}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,2}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,3}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,3}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,4}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,4}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,5}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,5}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,6}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{2,6}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{3,1}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{3,1}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{4,1}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{4,1}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{5,1}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{5,1}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{6,1}^{1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \times ℤ_3]_{6,1}^{2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,2}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,2}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,3}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,3}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,4}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,4}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,5}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,5}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,6}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,6}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,7}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,7}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,8}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,8}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,2}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,2}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,3}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,3}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,4}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,4}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,5}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,5}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,6}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,6}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,7}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,7}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,8}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,8}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,2}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,2}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,3}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,3}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,4}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,4}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,2}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,2}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,3}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,3}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,4}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,4}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{5,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{5,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{6,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{6,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{7,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{7,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{8,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{8,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{1,1}^{1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{1,2}^{1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{1,3}^{1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{2,1}^{1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{3,1}^{1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,1}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,1}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,2}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,2}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,3}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,3}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,4}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,4}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,1}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,1}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,2}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,2}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,3}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,3}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,4}^{1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,4}^{2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{1,1}^{1}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{1,1}^{2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{1,2}^{1}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{1,2}^{2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{2,1}^{1}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{2,1}^{2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{2,2}^{1}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,0}_{8}]_{2,2}^{2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{1,1}^{1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{1,2}^{1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{2,1}^{1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{2,2}^{1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{3,1}^{1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{3,2}^{1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{1,1}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{1,2}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{2,1}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{2,2}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{3,1}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{3,2}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{4,1}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{4,2}^{1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{1,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{1,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{2,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{2,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{3,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{3,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{4,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{4,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{5,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{5,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{6,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{6,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{7,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{7,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{8,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{3}]_{8,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,2}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,2}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,3}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,3}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,4}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,4}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,5}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,5}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,6}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,6}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,7}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,7}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,8}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{1,8}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{2,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{2,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{3,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{3,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{4,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Rep}(SD_{16})]_{4,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{12}]_{1,1}^{1}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{12}]_{1,1}^{2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{12}]_{2,1}^{1}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,2}_{12}]_{2,1}^{2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{1,1}^{1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{1,1}^{2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{2,1}^{1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{2,1}^{2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{3,1}^{1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{3,1}^{2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{4,1}^{1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( ℤ_2\times ℤ_3)]_{4,1}^{2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{1,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{1,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{2,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{2,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{3,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{3,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{4,1}^{1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{FR}^{7,1,4}_{3}]_{4,1}^{2}\) |
7 |
16. |
data |
|
|
|
|
|
\([ℤ_7]_{1,1}^{1}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,1}^{2}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,1}^{3}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,1}^{4}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,2}^{1}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,2}^{2}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,2}^{3}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,2}^{4}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,3}^{1}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{1,3}^{2}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{2,1}^{1}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{2,1}^{2}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{2,1}^{3}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{2,1}^{4}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{3,1}^{1}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{3,1}^{2}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{3,1}^{3}\) |
7 |
7. |
data |
|
|
|
|
|
\([ℤ_7]_{3,1}^{4}\) |
7 |
7. |
data |
|
|
|
|
|