List of Small Multiplicity-Free Fusion Categories
All numeric solutions of the pentagon and hexagon equations for all multiplicity free fusion categories up to and including rank 7 can be downloaded from the following link
The numeric solutions are organized as follows. For each fusion ring there is a folder corresponding to one of its categories where files can be found for the pentagon, hexagon, and pivotal structures. There is also a file that lists all indices of the nonzero structure constants. The pentsol files contain rows of tab-separated numbers of which the first 6 correspond to the object labels and the last two to the real and imaginary parts of the corresponding F-symbol. A similar convention is used for the solutions to the hexagon and pivotal equations. All rings and categories in these files should be labeled the same way as on this web site.
The symbolic solutions are available as part of the Anyonica and the TensorCategories.jl packages. Any category with formal name \(\text{FC}^{a,b,c,d}_{e,f,g}\) can be obtained be evaluating the following code
- Anyonica:
FusionCategoryByCode[{a,b,c,d,e,f,g}]
- TensorCategories.jl:
anyonwiki(a,b,c,d,e,f,g)
but do take a look at the Software page that contains other sources and amazing software as well!
List of multiplicity-free fusion categories up to rank 7
Below are the multiplicity-free fusion categories up to rank 7. These should be all the solutions, both unitary and non-unitary, braided and non-braided, and for all admissible sets of possible $0$-values for the $F$-symbols. If any results seem odd, please raise an issue on the github page. The data on this page comes from the following thesis.
Formal Name | Name | Rank | \(\mathcal{D}_{FP}^2\) | Data | |||||
---|---|---|---|---|---|---|---|---|---|
\(\text{FC}^{1, 1, 0}_{1, 1, 1, 1}\) | \([\text{Trivial}]_{1,1}^{1}\) | 1 | 1. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{2, 1, 0}_{1, 1, 1, 1}\) | \([\mathbb{Z}_2]_{1,1}^{1}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{2, 1, 0}_{1, 1, 1, 2}\) | \([\mathbb{Z}_2]_{1,1}^{2}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{2, 1, 0}_{1, 1, 2, 1}\) | \([\mathbb{Z}_2]_{1,2}^{1}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{2, 1, 0}_{1, 1, 2, 2}\) | \([\mathbb{Z}_2]_{1,2}^{2}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{2, 1, 0}_{1, 2, 1, 1}\) | \([\mathbb{Z}_2]_{2,1}^{1}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{2, 1, 0}_{1, 2, 1, 2}\) | \([\mathbb{Z}_2]_{2,1}^{2}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{2, 1, 0}_{1, 2, 2, 1}\) | \([\mathbb{Z}_2]_{2,2}^{1}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{2, 1, 0}_{1, 2, 2, 2}\) | \([\mathbb{Z}_2]_{2,2}^{2}\) | 2 | 2. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{2, 1, 0}_{2, 1, 1, 1}\) | \([\text{Fib}]_{1,1}^{1}\) | 2 | 3.61803 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{2, 1, 0}_{2, 1, 2, 1}\) | \([\text{Fib}]_{1,2}^{1}\) | 2 | 3.61803 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{2, 1, 0}_{2, 2, 1, 1}\) | \([\text{Fib}]_{2,1}^{1}\) | 2 | 3.61803 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{2, 1, 0}_{2, 2, 2, 1}\) | \([\text{Fib}]_{2,2}^{1}\) | 2 | 3.61803 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 1, 1, 1}\) | \([\text{Ising}]_{1,1}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 1, 1, 2}\) | \([\text{Ising}]_{1,1}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 1, 2, 1}\) | \([\text{Ising}]_{1,2}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 1, 2, 2}\) | \([\text{Ising}]_{1,2}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 1, 3, 1}\) | \([\text{Ising}]_{1,3}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 1, 3, 2}\) | \([\text{Ising}]_{1,3}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 1, 4, 1}\) | \([\text{Ising}]_{1,4}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 1, 4, 2}\) | \([\text{Ising}]_{1,4}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 2, 1, 1}\) | \([\text{Ising}]_{2,1}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 2, 1, 2}\) | \([\text{Ising}]_{2,1}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 2, 2, 1}\) | \([\text{Ising}]_{2,2}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 2, 2, 2}\) | \([\text{Ising}]_{2,2}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 2, 3, 1}\) | \([\text{Ising}]_{2,3}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 2, 3, 2}\) | \([\text{Ising}]_{2,3}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{1, 2, 4, 1}\) | \([\text{Ising}]_{2,4}^{1}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{1, 2, 4, 2}\) | \([\text{Ising}]_{2,4}^{2}\) | 3 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{2, 1, 1, 1}\) | \([\text{Rep}( D_3)]_{1,1}^{1}\) | 3 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{2, 1, 2, 1}\) | \([\text{Rep}( D_3)]_{1,2}^{1}\) | 3 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{2, 1, 3, 1}\) | \([\text{Rep}( D_3)]_{1,3}^{1}\) | 3 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{2, 2, 0, 1}\) | \([\text{Rep}( D_3)]_{2,0}^{1}\) | 3 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{3, 1, 0}_{2, 3, 0, 1}\) | \([\text{Rep}( D_3)]_{3,0}^{1}\) | 3 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{3, 1, 0}_{3, 1, 1, 1}\) | \([\text{PSU}(2)_5]_{1,1}^{1}\) | 3 | 9.2959 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{3, 1, 2, 1}\) | \([\text{PSU}(2)_5]_{1,2}^{1}\) | 3 | 9.2959 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 0}_{3, 2, 1, 1}\) | \([\text{PSU}(2)_5]_{2,1}^{1}\) | 3 | 9.2959 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{3, 2, 2, 1}\) | \([\text{PSU}(2)_5]_{2,2}^{1}\) | 3 | 9.2959 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{3, 3, 1, 1}\) | \([\text{PSU}(2)_5]_{3,1}^{1}\) | 3 | 9.2959 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 0}_{3, 3, 2, 1}\) | \([\text{PSU}(2)_5]_{3,2}^{1}\) | 3 | 9.2959 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 2}_{1, 1, 1, 1}\) | \([\mathbb{Z}_3]_{1,1}^{1}\) | 3 | 3. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 2}_{1, 1, 1, 2}\) | \([\mathbb{Z}_3]_{1,1}^{2}\) | 3 | 3. | data | ![]() |
||||
\(\text{FC}^{3, 1, 2}_{1, 1, 2, 1}\) | \([\mathbb{Z}_3]_{1,2}^{1}\) | 3 | 3. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{3, 1, 2}_{1, 1, 2, 2}\) | \([\mathbb{Z}_3]_{1,2}^{2}\) | 3 | 3. | data | ![]() |
||||
\(\text{FC}^{3, 1, 2}_{1, 1, 3, 1}\) | \([\mathbb{Z}_3]_{1,3}^{1}\) | 3 | 3. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{3, 1, 2}_{1, 1, 3, 2}\) | \([\mathbb{Z}_3]_{1,3}^{2}\) | 3 | 3. | data | ![]() |
||||
\(\text{FC}^{3, 1, 2}_{1, 2, 0, 1}\) | \([\mathbb{Z}_3]_{2,0}^{1}\) | 3 | 3. | data | ![]() |
![]() |
|||
\(\text{FC}^{3, 1, 2}_{1, 2, 0, 2}\) | \([\mathbb{Z}_3]_{2,0}^{2}\) | 3 | 3. | data | |||||
\(\text{FC}^{3, 1, 2}_{1, 3, 0, 1}\) | \([\mathbb{Z}_3]_{3,0}^{1}\) | 3 | 3. | data | ![]() |
![]() |
|||
\(\text{FC}^{3, 1, 2}_{1, 3, 0, 2}\) | \([\mathbb{Z}_3]_{3,0}^{2}\) | 3 | 3. | data | |||||
\(\text{FC}^{4, 1, 0}_{1, 1, 1, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{1, 1, 1, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 1, 1, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 1, 2, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,2}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 1, 2, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,2}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{1, 1, 3, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,3}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 1, 3, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,3}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 1, 4, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,4}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{1, 1, 4, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,4}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 1, 4, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,4}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 1, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,1}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 1, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,1}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 1, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,1}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 2, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,2}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 2, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,2}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 2, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,2}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 2, 4}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,2}^{4}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 3, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,3}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 3, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,3}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 3, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,3}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 4, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,4}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{1, 2, 4, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,4}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 4, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,4}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 5, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,5}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{1, 2, 5, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,5}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 5, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,5}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 5, 4}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,5}^{4}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 6, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,6}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{1, 2, 6, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,6}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 2, 6, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,6}^{3}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{1, 3, 0, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{3,0}^{1}\) | 4 | 4. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 0}_{1, 3, 0, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{3,0}^{2}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 0}_{1, 3, 0, 3}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{3,0}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 0}_{1, 4, 0, 1}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{4,0}^{1}\) | 4 | 4. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 0}_{1, 4, 0, 2}\) | \([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{4,0}^{2}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 0}_{2, 1, 1, 1}\) | \([\text{SU}(2)_3]_{1,1}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{2, 1, 1, 2}\) | \([\text{SU}(2)_3]_{1,1}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 1, 2, 1}\) | \([\text{SU}(2)_3]_{1,2}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{2, 1, 2, 2}\) | \([\text{SU}(2)_3]_{1,2}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 1, 3, 1}\) | \([\text{SU}(2)_3]_{1,3}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{2, 1, 3, 2}\) | \([\text{SU}(2)_3]_{1,3}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 1, 4, 1}\) | \([\text{SU}(2)_3]_{1,4}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{2, 1, 4, 2}\) | \([\text{SU}(2)_3]_{1,4}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 2, 1, 1}\) | \([\text{SU}(2)_3]_{2,1}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 2, 1, 2}\) | \([\text{SU}(2)_3]_{2,1}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 2, 2, 1}\) | \([\text{SU}(2)_3]_{2,2}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 2, 2, 2}\) | \([\text{SU}(2)_3]_{2,2}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 2, 3, 1}\) | \([\text{SU}(2)_3]_{2,3}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 2, 3, 2}\) | \([\text{SU}(2)_3]_{2,3}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 2, 4, 1}\) | \([\text{SU}(2)_3]_{2,4}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 2, 4, 2}\) | \([\text{SU}(2)_3]_{2,4}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 3, 1, 1}\) | \([\text{SU}(2)_3]_{3,1}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 1, 2}\) | \([\text{SU}(2)_3]_{3,1}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 2, 1}\) | \([\text{SU}(2)_3]_{3,2}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 2, 2}\) | \([\text{SU}(2)_3]_{3,2}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 3, 1}\) | \([\text{SU}(2)_3]_{3,3}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 3, 2}\) | \([\text{SU}(2)_3]_{3,3}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 4, 1}\) | \([\text{SU}(2)_3]_{3,4}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 3, 4, 2}\) | \([\text{SU}(2)_3]_{3,4}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{2, 4, 1, 1}\) | \([\text{SU}(2)_3]_{4,1}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 1, 2}\) | \([\text{SU}(2)_3]_{4,1}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 2, 1}\) | \([\text{SU}(2)_3]_{4,2}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 2, 2}\) | \([\text{SU}(2)_3]_{4,2}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 3, 1}\) | \([\text{SU}(2)_3]_{4,3}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 3, 2}\) | \([\text{SU}(2)_3]_{4,3}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 4, 1}\) | \([\text{SU}(2)_3]_{4,4}^{1}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{2, 4, 4, 2}\) | \([\text{SU}(2)_3]_{4,4}^{2}\) | 4 | 7.23607 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{3, 1, 1, 1}\) | \([\text{Rep}( D_5)]_{1,1}^{1}\) | 4 | 10. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{3, 1, 2, 1}\) | \([\text{Rep}( D_5)]_{1,2}^{1}\) | 4 | 10. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{3, 1, 3, 1}\) | \([\text{Rep}( D_5)]_{1,3}^{1}\) | 4 | 10. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{3, 2, 0, 1}\) | \([\text{Rep}( D_5)]_{2,0}^{1}\) | 4 | 10. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 0}_{3, 3, 0, 1}\) | \([\text{Rep}( D_5)]_{3,0}^{1}\) | 4 | 10. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 0}_{4, 1, 1, 1}\) | \([\text{PSU}(2)_6]_{1,1}^{1}\) | 4 | 13.6569 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{4, 2, 1, 1}\) | \([\text{PSU}(2)_6]_{2,1}^{1}\) | 4 | 13.6569 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 0}_{5, 1, 1, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{1,1}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{5, 1, 2, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{1,2}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{5, 1, 3, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{1,3}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{5, 2, 1, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{2,1}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{5, 2, 2, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{2,2}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{5, 2, 3, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{2,3}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{5, 2, 4, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{2,4}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{5, 3, 1, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{3,1}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{5, 3, 2, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{3,2}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{5, 3, 3, 1}\) | \([\text{Fib}\otimes\text{Fib}]_{3,3}^{1}\) | 4 | 13.0902 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{6, 1, 1, 1}\) | \([\text{PSU}(2)_7]_{1,1}^{1}\) | 4 | 19.2344 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{6, 1, 2, 1}\) | \([\text{PSU}(2)_7]_{1,2}^{1}\) | 4 | 19.2344 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 0}_{6, 2, 1, 1}\) | \([\text{PSU}(2)_7]_{2,1}^{1}\) | 4 | 19.2344 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{6, 2, 2, 1}\) | \([\text{PSU}(2)_7]_{2,2}^{1}\) | 4 | 19.2344 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{6, 3, 1, 1}\) | \([\text{PSU}(2)_7]_{3,1}^{1}\) | 4 | 19.2344 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 0}_{6, 3, 2, 1}\) | \([\text{PSU}(2)_7]_{3,2}^{1}\) | 4 | 19.2344 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 1, 1, 1}\) | \([\mathbb{Z}_4]_{1,1}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 2}_{1, 1, 1, 2}\) | \([\mathbb{Z}_4]_{1,1}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 1, 1, 3}\) | \([\mathbb{Z}_4]_{1,1}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 1, 2, 1}\) | \([\mathbb{Z}_4]_{1,2}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 2}_{1, 1, 2, 2}\) | \([\mathbb{Z}_4]_{1,2}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 1, 2, 3}\) | \([\mathbb{Z}_4]_{1,2}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 1, 3, 1}\) | \([\mathbb{Z}_4]_{1,3}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 2}_{1, 1, 3, 2}\) | \([\mathbb{Z}_4]_{1,3}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 1, 3, 3}\) | \([\mathbb{Z}_4]_{1,3}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 1, 4, 1}\) | \([\mathbb{Z}_4]_{1,4}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{4, 1, 2}_{1, 1, 4, 2}\) | \([\mathbb{Z}_4]_{1,4}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 1, 4, 3}\) | \([\mathbb{Z}_4]_{1,4}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 2, 1, 1}\) | \([\mathbb{Z}_4]_{2,1}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 2, 1, 2}\) | \([\mathbb{Z}_4]_{2,1}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 2}_{1, 2, 1, 3}\) | \([\mathbb{Z}_4]_{2,1}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 2, 2, 1}\) | \([\mathbb{Z}_4]_{2,2}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 2, 2, 2}\) | \([\mathbb{Z}_4]_{2,2}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 2}_{1, 2, 2, 3}\) | \([\mathbb{Z}_4]_{2,2}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 2, 3, 1}\) | \([\mathbb{Z}_4]_{2,3}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 2, 3, 2}\) | \([\mathbb{Z}_4]_{2,3}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 2}_{1, 2, 3, 3}\) | \([\mathbb{Z}_4]_{2,3}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 2, 4, 1}\) | \([\mathbb{Z}_4]_{2,4}^{1}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{4, 1, 2}_{1, 2, 4, 2}\) | \([\mathbb{Z}_4]_{2,4}^{2}\) | 4 | 4. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{4, 1, 2}_{1, 2, 4, 3}\) | \([\mathbb{Z}_4]_{2,4}^{3}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 3, 0, 1}\) | \([\mathbb{Z}_4]_{3,0}^{1}\) | 4 | 4. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{1, 3, 0, 2}\) | \([\mathbb{Z}_4]_{3,0}^{2}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 3, 0, 3}\) | \([\mathbb{Z}_4]_{3,0}^{3}\) | 4 | 4. | data | |||||
\(\text{FC}^{4, 1, 2}_{1, 4, 0, 1}\) | \([\mathbb{Z}_4]_{4,0}^{1}\) | 4 | 4. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{1, 4, 0, 2}\) | \([\mathbb{Z}_4]_{4,0}^{2}\) | 4 | 4. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{1, 4, 0, 3}\) | \([\mathbb{Z}_4]_{4,0}^{3}\) | 4 | 4. | data | |||||
\(\text{FC}^{4, 1, 2}_{2, 1, 0, 1}\) | \([\text{TY}(\mathbb{Z}_3)]_{1,0}^{1}\) | 4 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{2, 1, 0, 2}\) | \([\text{TY}(\mathbb{Z}_3)]_{1,0}^{2}\) | 4 | 6. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{2, 2, 0, 1}\) | \([\text{TY}(\mathbb{Z}_3)]_{2,0}^{1}\) | 4 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{2, 2, 0, 2}\) | \([\text{TY}(\mathbb{Z}_3)]_{2,0}^{2}\) | 4 | 6. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{2, 3, 0, 1}\) | \([\text{TY}(\mathbb{Z}_3)]_{3,0}^{1}\) | 4 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{2, 3, 0, 2}\) | \([\text{TY}(\mathbb{Z}_3)]_{3,0}^{2}\) | 4 | 6. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{2, 4, 0, 1}\) | \([\text{TY}(\mathbb{Z}_3)]_{4,0}^{1}\) | 4 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{2, 4, 0, 2}\) | \([\text{TY}(\mathbb{Z}_3)]_{4,0}^{2}\) | 4 | 6. | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{4, 1, 0, 1}\) | \([\text{Pseudo PSU}(2)_6]_{1,0}^{1}\) | 4 | 13.6569 | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{4, 2, 0, 1}\) | \([\text{Pseudo PSU}(2)_6]_{2,0}^{1}\) | 4 | 13.6569 | data | ![]() |
![]() |
|||
\(\text{FC}^{4, 1, 2}_{4, 3, 0, 1}\) | \([\text{Pseudo PSU}(2)_6]_{3,0}^{1}\) | 4 | 13.6569 | data | ![]() |
||||
\(\text{FC}^{4, 1, 2}_{4, 4, 0, 1}\) | \([\text{Pseudo PSU}(2)_6]_{4,0}^{1}\) | 4 | 13.6569 | data | ![]() |
||||
\(\text{FC}^{5, 1, 0}_{1, 1, 1, 1}\) | \([\text{Rep}( D_4)]_{1,1}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 1, 1, 2}\) | \([\text{Rep}( D_4)]_{1,1}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 1, 2, 1}\) | \([\text{Rep}( D_4)]_{1,2}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 1, 2, 2}\) | \([\text{Rep}( D_4)]_{1,2}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 1, 3, 1}\) | \([\text{Rep}( D_4)]_{1,3}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 1, 3, 2}\) | \([\text{Rep}( D_4)]_{1,3}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 1, 4, 1}\) | \([\text{Rep}( D_4)]_{1,4}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 1, 4, 2}\) | \([\text{Rep}( D_4)]_{1,4}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 2, 1, 1}\) | \([\text{Rep}( D_4)]_{2,1}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 2, 1, 2}\) | \([\text{Rep}( D_4)]_{2,1}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 2, 2, 1}\) | \([\text{Rep}( D_4)]_{2,2}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 2, 2, 2}\) | \([\text{Rep}( D_4)]_{2,2}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 2, 3, 1}\) | \([\text{Rep}( D_4)]_{2,3}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 2, 3, 2}\) | \([\text{Rep}( D_4)]_{2,3}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 2, 4, 1}\) | \([\text{Rep}( D_4)]_{2,4}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 2, 4, 2}\) | \([\text{Rep}( D_4)]_{2,4}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 3, 1, 1}\) | \([\text{Rep}( D_4)]_{3,1}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 3, 1, 2}\) | \([\text{Rep}( D_4)]_{3,1}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 3, 2, 1}\) | \([\text{Rep}( D_4)]_{3,2}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 3, 2, 2}\) | \([\text{Rep}( D_4)]_{3,2}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 3, 3, 1}\) | \([\text{Rep}( D_4)]_{3,3}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 3, 3, 2}\) | \([\text{Rep}( D_4)]_{3,3}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 3, 4, 1}\) | \([\text{Rep}( D_4)]_{3,4}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 3, 4, 2}\) | \([\text{Rep}( D_4)]_{3,4}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 3, 5, 1}\) | \([\text{Rep}( D_4)]_{3,5}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 3, 5, 2}\) | \([\text{Rep}( D_4)]_{3,5}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 3, 6, 1}\) | \([\text{Rep}( D_4)]_{3,6}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 3, 6, 2}\) | \([\text{Rep}( D_4)]_{3,6}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 4, 1, 1}\) | \([\text{Rep}( D_4)]_{4,1}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 4, 1, 2}\) | \([\text{Rep}( D_4)]_{4,1}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 4, 2, 1}\) | \([\text{Rep}( D_4)]_{4,2}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 4, 2, 2}\) | \([\text{Rep}( D_4)]_{4,2}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 4, 3, 1}\) | \([\text{Rep}( D_4)]_{4,3}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 4, 3, 2}\) | \([\text{Rep}( D_4)]_{4,3}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 4, 4, 1}\) | \([\text{Rep}( D_4)]_{4,4}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 4, 4, 2}\) | \([\text{Rep}( D_4)]_{4,4}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 4, 5, 1}\) | \([\text{Rep}( D_4)]_{4,5}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 4, 5, 2}\) | \([\text{Rep}( D_4)]_{4,5}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{1, 4, 6, 1}\) | \([\text{Rep}( D_4)]_{4,6}^{1}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{1, 4, 6, 2}\) | \([\text{Rep}( D_4)]_{4,6}^{2}\) | 5 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{3, 1, 1, 1}\) | \([\text{SU}(2)_4]_{1,1}^{1}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 0}_{3, 1, 1, 2}\) | \([\text{SU}(2)_4]_{1,1}^{2}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{3, 1, 2, 1}\) | \([\text{SU}(2)_4]_{1,2}^{1}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 0}_{3, 1, 2, 2}\) | \([\text{SU}(2)_4]_{1,2}^{2}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{3, 2, 1, 1}\) | \([\text{SU}(2)_4]_{2,1}^{1}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 0}_{3, 2, 1, 2}\) | \([\text{SU}(2)_4]_{2,1}^{2}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{3, 2, 2, 1}\) | \([\text{SU}(2)_4]_{2,2}^{1}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 0}_{3, 2, 2, 2}\) | \([\text{SU}(2)_4]_{2,2}^{2}\) | 5 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{4, 1, 1, 1}\) | \([\text{Rep}( D_7)]_{1,1}^{1}\) | 5 | 14. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{4, 1, 2, 1}\) | \([\text{Rep}( D_7)]_{1,2}^{1}\) | 5 | 14. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{4, 1, 3, 1}\) | \([\text{Rep}( D_7)]_{1,3}^{1}\) | 5 | 14. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{4, 2, 0, 1}\) | \([\text{Rep}( D_7)]_{2,0}^{1}\) | 5 | 14. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 0}_{4, 3, 0, 1}\) | \([\text{Rep}( D_7)]_{3,0}^{1}\) | 5 | 14. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 0}_{6, 1, 1, 1}\) | \([\text{Rep}( S_4)]_{1,1}^{1}\) | 5 | 24. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{6, 2, 1, 1}\) | \([\text{Rep}( S_4)]_{2,1}^{1}\) | 5 | 24. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{7, 1, 1, 1}\) | \([\text{PSU}(2)_8]_{1,1}^{1}\) | 5 | 26.1803 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{7, 1, 2, 1}\) | \([\text{PSU}(2)_8]_{1,2}^{1}\) | 5 | 26.1803 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{7, 2, 1, 1}\) | \([\text{PSU}(2)_8]_{2,1}^{1}\) | 5 | 26.1803 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{7, 2, 2, 1}\) | \([\text{PSU}(2)_8]_{2,2}^{1}\) | 5 | 26.1803 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{5, 1, 0}_{10, 1, 1, 1}\) | \([\text{PSU}(2)_9]_{1,1}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 0}_{10, 1, 2, 1}\) | \([\text{PSU}(2)_9]_{1,2}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 0}_{10, 2, 1, 1}\) | \([\text{PSU}(2)_9]_{2,1}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 2, 2, 1}\) | \([\text{PSU}(2)_9]_{2,2}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 3, 1, 1}\) | \([\text{PSU}(2)_9]_{3,1}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 3, 2, 1}\) | \([\text{PSU}(2)_9]_{3,2}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 4, 1, 1}\) | \([\text{PSU}(2)_9]_{4,1}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 4, 2, 1}\) | \([\text{PSU}(2)_9]_{4,2}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 5, 1, 1}\) | \([\text{PSU}(2)_9]_{5,1}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 0}_{10, 5, 2, 1}\) | \([\text{PSU}(2)_9]_{5,2}^{1}\) | 5 | 34.6464 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 2}_{1, 1, 0, 1}\) | \([\text{TY}( \mathbb{Z}_4)]_{1,0}^{1}\) | 5 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{1, 1, 0, 2}\) | \([\text{TY}( \mathbb{Z}_4)]_{1,0}^{2}\) | 5 | 8. | data | ![]() |
||||
\(\text{FC}^{5, 1, 2}_{1, 2, 0, 1}\) | \([\text{TY}( \mathbb{Z}_4)]_{2,0}^{1}\) | 5 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{1, 2, 0, 2}\) | \([\text{TY}( \mathbb{Z}_4)]_{2,0}^{2}\) | 5 | 8. | data | ![]() |
||||
\(\text{FC}^{5, 1, 2}_{1, 3, 0, 1}\) | \([\text{TY}( \mathbb{Z}_4)]_{3,0}^{1}\) | 5 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{1, 3, 0, 2}\) | \([\text{TY}( \mathbb{Z}_4)]_{3,0}^{2}\) | 5 | 8. | data | ![]() |
||||
\(\text{FC}^{5, 1, 2}_{1, 4, 0, 1}\) | \([\text{TY}( \mathbb{Z}_4)]_{4,0}^{1}\) | 5 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{1, 4, 0, 2}\) | \([\text{TY}( \mathbb{Z}_4)]_{4,0}^{2}\) | 5 | 8. | data | ![]() |
||||
\(\text{FC}^{5, 1, 2}_{3, 1, 0, 1}\) | \([\text{Pseudo SU}(2)_4]_{1,0}^{1}\) | 5 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{3, 1, 0, 2}\) | \([\text{Pseudo SU}(2)_4]_{1,0}^{2}\) | 5 | 12. | data | ![]() |
||||
\(\text{FC}^{5, 1, 2}_{3, 2, 0, 1}\) | \([\text{Pseudo SU}(2)_4]_{2,0}^{1}\) | 5 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{3, 2, 0, 2}\) | \([\text{Pseudo SU}(2)_4]_{2,0}^{2}\) | 5 | 12. | data | ![]() |
||||
\(\text{FC}^{5, 1, 2}_{4, 1, 0, 1}\) | \([\text{Pseudo Rep}( S_4)]_{1,0}^{1}\) | 5 | 24. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 2}_{4, 2, 0, 1}\) | \([\text{Pseudo Rep}( S_4)]_{2,0}^{1}\) | 5 | 24. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 4}_{1, 1, 1, 1}\) | \([\mathbb{Z}_5]_{1,1}^{1}\) | 5 | 5. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 4}_{1, 1, 1, 2}\) | \([\mathbb{Z}_5]_{1,1}^{2}\) | 5 | 5. | data | ![]() |
||||
\(\text{FC}^{5, 1, 4}_{1, 1, 1, 3}\) | \([\mathbb{Z}_5]_{1,1}^{3}\) | 5 | 5. | data | ![]() |
||||
\(\text{FC}^{5, 1, 4}_{1, 1, 2, 1}\) | \([\mathbb{Z}_5]_{1,2}^{1}\) | 5 | 5. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{5, 1, 4}_{1, 1, 2, 2}\) | \([\mathbb{Z}_5]_{1,2}^{2}\) | 5 | 5. | data | ![]() |
||||
\(\text{FC}^{5, 1, 4}_{1, 1, 2, 3}\) | \([\mathbb{Z}_5]_{1,2}^{3}\) | 5 | 5. | data | ![]() |
||||
\(\text{FC}^{5, 1, 4}_{1, 1, 3, 1}\) | \([\mathbb{Z}_5]_{1,3}^{1}\) | 5 | 5. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{5, 1, 4}_{1, 1, 3, 2}\) | \([\mathbb{Z}_5]_{1,3}^{2}\) | 5 | 5. | data | ![]() |
||||
\(\text{FC}^{5, 1, 4}_{1, 2, 0, 1}\) | \([\mathbb{Z}_5]_{2,0}^{1}\) | 5 | 5. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 4}_{1, 2, 0, 2}\) | \([\mathbb{Z}_5]_{2,0}^{2}\) | 5 | 5. | data | |||||
\(\text{FC}^{5, 1, 4}_{1, 2, 0, 3}\) | \([\mathbb{Z}_5]_{2,0}^{3}\) | 5 | 5. | data | |||||
\(\text{FC}^{5, 1, 4}_{1, 3, 0, 1}\) | \([\mathbb{Z}_5]_{3,0}^{1}\) | 5 | 5. | data | ![]() |
![]() |
|||
\(\text{FC}^{5, 1, 4}_{1, 3, 0, 2}\) | \([\mathbb{Z}_5]_{3,0}^{2}\) | 5 | 5. | data | |||||
\(\text{FC}^{5, 1, 4}_{1, 3, 0, 3}\) | \([\mathbb{Z}_5]_{3,0}^{3}\) | 5 | 5. | data | |||||
\(\text{FC}^{6, 1, 0}_{1, 1, 1, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,1}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 1, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,1}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 1, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,1}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 1, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,1}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 2, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,2}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 2, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,2}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 2, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,2}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 2, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,2}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 3, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,3}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 3, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,3}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 3, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,3}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 3, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,3}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 4, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,4}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 4, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,4}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 4, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,4}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 4, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,4}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 5, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,5}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 5, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,5}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 5, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,5}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 5, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,5}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 6, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,6}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 6, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,6}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 6, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,6}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 6, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,6}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 7, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,7}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 7, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,7}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 7, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,7}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 7, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,7}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 8, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,8}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{1, 1, 8, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,8}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 8, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,8}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 1, 8, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{1,8}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 1, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,1}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 1, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,1}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 1, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,1}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 1, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,1}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 2, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,2}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 2, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,2}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 2, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,2}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 2, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,2}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 3, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,3}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 3, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,3}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 3, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,3}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 4, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,4}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 4, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,4}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 4, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,4}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 5, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,5}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 5, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,5}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 5, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,5}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 6, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,6}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 2, 6, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,6}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 2, 6, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{2,6}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 1, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,1}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 3, 1, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,1}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 1, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,1}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 1, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,1}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 2, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,2}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 3, 2, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,2}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 2, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,2}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 2, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,2}^{4}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 3, 3, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,3}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 3, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,3}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 3, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,3}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 3, 4, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,4}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 4, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,4}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 4, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,4}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 5, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,5}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 3, 5, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,5}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 5, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,5}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 6, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,6}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{1, 3, 6, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,6}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 3, 6, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{3,6}^{3}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{1, 4, 0, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{4,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{1, 4, 0, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{4,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{1, 4, 0, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{4,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{1, 4, 0, 4}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{4,0}^{4}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{1, 5, 0, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{5,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{1, 5, 0, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{5,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{1, 5, 0, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{5,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{1, 6, 0, 1}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{6,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{1, 6, 0, 2}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{6,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{1, 6, 0, 3}\) | \([\mathbb{Z}_2\otimes \text{Ising}]_{6,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{2, 1, 1, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,1}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 1, 1, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,1}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 1, 2, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,2}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 1, 2, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,2}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 1, 3, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,3}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 1, 3, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,3}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 1, 4, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,4}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 1, 4, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,4}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 1, 5, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,5}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 1, 5, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,5}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 1, 6, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,6}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 1, 6, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{1,6}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 2, 1, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,1}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 2, 1, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,1}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 2, 2, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,2}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 2, 2, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,2}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 2, 3, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,3}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 2, 3, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,3}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 2, 4, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,4}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 2, 4, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,4}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 2, 5, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,5}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 2, 5, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,5}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 2, 6, 1}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,6}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{2, 2, 6, 2}\) | \([\mathbb{Z}_2\otimes \text{Rep}(D_3)]_{2,6}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{2, 3, 0, 1}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{3,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{2, 3, 0, 2}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{3,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{2, 4, 0, 1}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{4,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{2, 4, 0, 2}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{4,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{2, 5, 0, 1}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{5,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{2, 5, 0, 2}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{5,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{2, 6, 0, 1}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{6,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{2, 6, 0, 2}\) | \([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{6,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 0}_{4, 1, 1, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,1}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 1, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,1}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 2, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,2}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 2, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,2}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 3, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,3}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 3, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,3}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 4, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,4}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 4, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,4}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 5, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,5}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 5, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,5}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 6, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,6}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 6, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,6}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 7, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,7}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 7, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,7}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 1, 8, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{1,8}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 1, 8, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{1,8}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 1, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,1}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 1, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,1}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 2, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,2}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 2, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,2}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 3, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,3}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 3, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,3}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 4, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,4}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 4, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,4}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 5, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,5}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 5, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,5}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 6, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,6}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 6, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,6}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 7, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,7}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 7, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,7}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 2, 8, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{2,8}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{4, 2, 8, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{2,8}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 1, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,1}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 1, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,1}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 2, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,2}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 2, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,2}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 3, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,3}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 3, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,3}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 4, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,4}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 4, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,4}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 5, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,5}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 5, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,5}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 6, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,6}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 6, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,6}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 7, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,7}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 7, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,7}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 8, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{3,8}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 3, 8, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{3,8}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 1, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,1}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 1, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,1}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 2, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,2}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 2, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,2}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 3, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,3}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 3, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,3}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 4, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,4}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 4, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,4}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 5, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,5}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 5, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,5}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 6, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,6}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 6, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,6}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 7, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,7}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 7, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,7}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 8, 1}\) | \([\text{Fib}\otimes\text{Ising}]_{4,8}^{1}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{4, 4, 8, 2}\) | \([\text{Fib}\otimes\text{Ising}]_{4,8}^{2}\) | 6 | 14.4721 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 1, 1, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{1,1}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 1, 2, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{1,2}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 1, 3, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{1,3}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 1, 4, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{1,4}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 1, 5, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{1,5}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 1, 6, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{1,6}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{5, 2, 1, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{2,1}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{5, 2, 2, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{2,2}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{5, 2, 3, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{2,3}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{5, 2, 4, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{2,4}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{5, 2, 5, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{2,5}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{5, 2, 6, 1}\) | \([\text{Fib} \otimes \text{Rep}( D_3)]_{2,6}^{1}\) | 6 | 21.7082 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 1, 1, 1}\) | \([\text{SU}(2)_5]_{1,1}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{6, 1, 1, 2}\) | \([\text{SU}(2)_5]_{1,1}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 1, 2, 1}\) | \([\text{SU}(2)_5]_{1,2}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{6, 1, 2, 2}\) | \([\text{SU}(2)_5]_{1,2}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 1, 3, 1}\) | \([\text{SU}(2)_5]_{1,3}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{6, 1, 3, 2}\) | \([\text{SU}(2)_5]_{1,3}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 1, 4, 1}\) | \([\text{SU}(2)_5]_{1,4}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{6, 1, 4, 2}\) | \([\text{SU}(2)_5]_{1,4}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 2, 1, 1}\) | \([\text{SU}(2)_5]_{2,1}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 2, 1, 2}\) | \([\text{SU}(2)_5]_{2,1}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 2, 2, 1}\) | \([\text{SU}(2)_5]_{2,2}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 2, 2, 2}\) | \([\text{SU}(2)_5]_{2,2}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 2, 3, 1}\) | \([\text{SU}(2)_5]_{2,3}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 2, 3, 2}\) | \([\text{SU}(2)_5]_{2,3}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 2, 4, 1}\) | \([\text{SU}(2)_5]_{2,4}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 2, 4, 2}\) | \([\text{SU}(2)_5]_{2,4}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 3, 1, 1}\) | \([\text{SU}(2)_5]_{3,1}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 1, 2}\) | \([\text{SU}(2)_5]_{3,1}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 2, 1}\) | \([\text{SU}(2)_5]_{3,2}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 2, 2}\) | \([\text{SU}(2)_5]_{3,2}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 3, 1}\) | \([\text{SU}(2)_5]_{3,3}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 3, 2}\) | \([\text{SU}(2)_5]_{3,3}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 4, 1}\) | \([\text{SU}(2)_5]_{3,4}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 3, 4, 2}\) | \([\text{SU}(2)_5]_{3,4}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 1, 1}\) | \([\text{SU}(2)_5]_{4,1}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 1, 2}\) | \([\text{SU}(2)_5]_{4,1}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 2, 1}\) | \([\text{SU}(2)_5]_{4,2}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 2, 2}\) | \([\text{SU}(2)_5]_{4,2}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 3, 1}\) | \([\text{SU}(2)_5]_{4,3}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 3, 2}\) | \([\text{SU}(2)_5]_{4,3}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 4, 1}\) | \([\text{SU}(2)_5]_{4,4}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 4, 4, 2}\) | \([\text{SU}(2)_5]_{4,4}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{6, 5, 1, 1}\) | \([\text{SU}(2)_5]_{5,1}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 1, 2}\) | \([\text{SU}(2)_5]_{5,1}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 2, 1}\) | \([\text{SU}(2)_5]_{5,2}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 2, 2}\) | \([\text{SU}(2)_5]_{5,2}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 3, 1}\) | \([\text{SU}(2)_5]_{5,3}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 3, 2}\) | \([\text{SU}(2)_5]_{5,3}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 4, 1}\) | \([\text{SU}(2)_5]_{5,4}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 5, 4, 2}\) | \([\text{SU}(2)_5]_{5,4}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 1, 1}\) | \([\text{SU}(2)_5]_{6,1}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 1, 2}\) | \([\text{SU}(2)_5]_{6,1}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 2, 1}\) | \([\text{SU}(2)_5]_{6,2}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 2, 2}\) | \([\text{SU}(2)_5]_{6,2}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 3, 1}\) | \([\text{SU}(2)_5]_{6,3}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 3, 2}\) | \([\text{SU}(2)_5]_{6,3}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 4, 1}\) | \([\text{SU}(2)_5]_{6,4}^{1}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{6, 6, 4, 2}\) | \([\text{SU}(2)_5]_{6,4}^{2}\) | 6 | 18.5918 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{7, 1, 1, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,1}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{7, 1, 2, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,2}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{7, 1, 3, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,3}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{7, 1, 4, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,4}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{7, 1, 5, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,5}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{7, 2, 0, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{2,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{7, 3, 0, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{3,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{7, 4, 0, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{4,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{7, 5, 0, 1}\) | \([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{5,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{8, 1, 1, 1}\) | \([\text{Rep}( D_9)]_{1,1}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{8, 1, 2, 1}\) | \([\text{Rep}( D_9)]_{1,2}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{8, 1, 3, 1}\) | \([\text{Rep}( D_9)]_{1,3}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{8, 1, 4, 1}\) | \([\text{Rep}( D_9)]_{1,4}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{8, 1, 5, 1}\) | \([\text{Rep}( D_9)]_{1,5}^{1}\) | 6 | 18. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{8, 2, 0, 1}\) | \([\text{Rep}( D_9)]_{2,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{8, 3, 0, 1}\) | \([\text{Rep}( D_9)]_{3,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{8, 4, 0, 1}\) | \([\text{Rep}( D_9)]_{4,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{8, 5, 0, 1}\) | \([\text{Rep}( D_9)]_{5,0}^{1}\) | 6 | 18. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 0}_{9, 1, 1, 1}\) | \([\text{SO}(5)_2]_{1,1}^{1}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{9, 1, 1, 2}\) | \([\text{SO}(5)_2]_{1,1}^{2}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{9, 2, 1, 1}\) | \([\text{SO}(5)_2]_{2,1}^{1}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{9, 2, 1, 2}\) | \([\text{SO}(5)_2]_{2,1}^{2}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{9, 3, 1, 1}\) | \([\text{SO}(5)_2]_{3,1}^{1}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{9, 3, 1, 2}\) | \([\text{SO}(5)_2]_{3,1}^{2}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{9, 4, 1, 1}\) | \([\text{SO}(5)_2]_{4,1}^{1}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{9, 4, 1, 2}\) | \([\text{SO}(5)_2]_{4,1}^{2}\) | 6 | 20. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 1, 1, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{1,1}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{14, 1, 2, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{1,2}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{14, 1, 3, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{1,3}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{14, 1, 4, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{1,4}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{14, 2, 1, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{2,1}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 2, 2, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{2,2}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 2, 3, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{2,3}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 2, 4, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{2,4}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 3, 1, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{3,1}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 3, 2, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{3,2}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 3, 3, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{3,3}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 3, 4, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{3,4}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 4, 1, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{4,1}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 4, 2, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{4,2}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 4, 3, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{4,3}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 4, 4, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{4,4}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 5, 1, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{5,1}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 5, 2, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{5,2}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 5, 3, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{5,3}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 5, 4, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{5,4}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 6, 1, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{6,1}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 6, 2, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{6,2}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 6, 3, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{6,3}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{14, 6, 4, 1}\) | \([\text{Fib} \otimes \text{PSU}(2)_5]_{6,4}^{1}\) | 6 | 33.6329 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{16, 1, 1, 1}\) | \([\text{PSU}(2)_{10}]_{1,1}^{1}\) | 6 | 44.7846 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{16, 1, 2, 1}\) | \([\text{PSU}(2)_{10}]_{1,2}^{1}\) | 6 | 44.7846 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{16, 2, 1, 1}\) | \([\text{PSU}(2)_{10}]_{2,1}^{1}\) | 6 | 44.7846 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{16, 2, 2, 1}\) | \([\text{PSU}(2)_{10}]_{2,2}^{1}\) | 6 | 44.7846 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 0}_{18, 1, 1, 1}\) | \([\text{PSU}(2)_{11}]_{1,1}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{18, 1, 2, 1}\) | \([\text{PSU}(2)_{11}]_{1,2}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 0}_{18, 2, 1, 1}\) | \([\text{PSU}(2)_{11}]_{2,1}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 2, 2, 1}\) | \([\text{PSU}(2)_{11}]_{2,2}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 3, 1, 1}\) | \([\text{PSU}(2)_{11}]_{3,1}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 3, 2, 1}\) | \([\text{PSU}(2)_{11}]_{3,2}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 4, 1, 1}\) | \([\text{PSU}(2)_{11}]_{4,1}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 4, 2, 1}\) | \([\text{PSU}(2)_{11}]_{4,2}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 5, 1, 1}\) | \([\text{PSU}(2)_{11}]_{5,1}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 5, 2, 1}\) | \([\text{PSU}(2)_{11}]_{5,2}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 6, 1, 1}\) | \([\text{PSU}(2)_{11}]_{6,1}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 0}_{18, 6, 2, 1}\) | \([\text{PSU}(2)_{11}]_{6,2}^{1}\) | 6 | 56.7468 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{1, 1, 0, 1}\) | \([D_3]_{1,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{1, 1, 0, 2}\) | \([D_3]_{1,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{1, 2, 0, 1}\) | \([D_3]_{2,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{1, 2, 0, 2}\) | \([D_3]_{2,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{1, 3, 0, 1}\) | \([D_3]_{3,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{1, 3, 0, 2}\) | \([D_3]_{3,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{1, 4, 0, 1}\) | \([D_3]_{4,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{1, 4, 0, 2}\) | \([D_3]_{4,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{1, 5, 0, 1}\) | \([D_3]_{5,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{1, 5, 0, 2}\) | \([D_3]_{5,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{1, 6, 0, 1}\) | \([D_3]_{6,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{1, 6, 0, 2}\) | \([D_3]_{6,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 1, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{1,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{2, 1, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{1,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 1, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{1,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 2, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{2,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{2, 2, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{2,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 2, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{2,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 3, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{3,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{2, 3, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{3,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 3, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{3,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 3, 0, 4}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{3,0}^{4}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 4, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{4,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{2, 4, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{4,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 4, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{4,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 5, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{5,0}^{1}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 5, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{5,0}^{2}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{2, 5, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{5,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 6, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{6,0}^{1}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 6, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{6,0}^{2}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{2, 6, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{6,0}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{2, 6, 0, 4}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{4}\right]_{ \mathbf{1}|0}^{ \text{Id}}]_{6,0}^{4}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 1, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,1}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 1, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,1}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 1, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,1}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 2, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,2}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 2, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,2}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 2, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,2}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 3, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,3}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 3, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,3}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 3, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,3}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 4, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,4}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 4, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,4}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 4, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,4}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 5, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,5}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 5, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,5}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 5, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,5}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 6, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,6}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 6, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,6}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 6, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,6}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 7, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,7}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 7, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,7}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 7, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,7}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 1, 8, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,8}^{1}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{3, 1, 8, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,8}^{2}\) | 6 | 8. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{3, 1, 8, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{1,8}^{3}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 2, 0, 1}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{2,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{3, 2, 0, 2}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{2,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{3, 2, 0, 3}\) | \([\left[\mathbb{Z}_{2} \trianglelefteq \mathbb{Z}_{2}\times\mathbb{Z}_{2}\right]_{ \mathbf{3}|0}^{ \text{Id}}]_{2,0}^{3}\) | 6 | 8. | data | |||||
\(\text{FC}^{6, 1, 2}_{4, 1, 1, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,1}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 1, 1, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,1}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 1, 2, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,2}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 1, 2, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,2}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 1, 3, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,3}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 1, 3, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,3}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 1, 4, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,4}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 1, 4, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,4}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 1, 5, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,5}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 1, 5, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,5}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 1, 6, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,6}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 1, 6, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{1,6}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 2, 1, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,1}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 2, 1, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,1}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 2, 2, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,2}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 2, 2, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,2}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 2, 3, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,3}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 2, 3, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,3}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 2, 4, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,4}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 2, 4, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,4}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 2, 5, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,5}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 2, 5, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,5}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 2, 6, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,6}^{1}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 2}_{4, 2, 6, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{2,6}^{2}\) | 6 | 12. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 2}_{4, 3, 0, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{3,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{4, 3, 0, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{3,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{4, 4, 0, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{4,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{4, 4, 0, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{4,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{4, 5, 0, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{5,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{4, 5, 0, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{5,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{4, 6, 0, 1}\) | \([\text{Rep}( \text{Dic}_{12})]_{6,0}^{1}\) | 6 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{4, 6, 0, 2}\) | \([\text{Rep}( \text{Dic}_{12})]_{6,0}^{2}\) | 6 | 12. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{7, 1, 0, 1}\) | \([\text{Pseudo SO(5})_2]_{1,0}^{1}\) | 6 | 20. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{7, 1, 0, 2}\) | \([\text{Pseudo SO(5})_2]_{1,0}^{2}\) | 6 | 20. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{7, 2, 0, 1}\) | \([\text{Pseudo SO(5})_2]_{2,0}^{1}\) | 6 | 20. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{7, 2, 0, 2}\) | \([\text{Pseudo SO(5})_2]_{2,0}^{2}\) | 6 | 20. | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{8, 1, 0, 1}\) | \([\text{HI}( \mathbb{Z}_3)]_{1,0}^{1}\) | 6 | 35.725 | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{8, 2, 0, 1}\) | \([\text{HI}( \mathbb{Z}_3)]_{2,0}^{1}\) | 6 | 35.725 | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 2}_{8, 3, 0, 1}\) | \([\text{HI}( \mathbb{Z}_3)]_{3,0}^{1}\) | 6 | 35.725 | data | ![]() |
||||
\(\text{FC}^{6, 1, 2}_{8, 4, 0, 1}\) | \([\text{HI}( \mathbb{Z}_3)]_{4,0}^{1}\) | 6 | 35.725 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 1, 1}\) | \([\mathbb{Z}_6]_{1,1}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{1, 1, 1, 2}\) | \([\mathbb{Z}_6]_{1,1}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 1, 1, 3}\) | \([\mathbb{Z}_6]_{1,1}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 1, 4}\) | \([\mathbb{Z}_6]_{1,1}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 2, 1}\) | \([\mathbb{Z}_6]_{1,2}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{1, 1, 2, 2}\) | \([\mathbb{Z}_6]_{1,2}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 1, 2, 3}\) | \([\mathbb{Z}_6]_{1,2}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 2, 4}\) | \([\mathbb{Z}_6]_{1,2}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 3, 1}\) | \([\mathbb{Z}_6]_{1,3}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{1, 1, 3, 2}\) | \([\mathbb{Z}_6]_{1,3}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 1, 3, 3}\) | \([\mathbb{Z}_6]_{1,3}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 3, 4}\) | \([\mathbb{Z}_6]_{1,3}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 4, 1}\) | \([\mathbb{Z}_6]_{1,4}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{1, 1, 4, 2}\) | \([\mathbb{Z}_6]_{1,4}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 1, 4, 3}\) | \([\mathbb{Z}_6]_{1,4}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 4, 4}\) | \([\mathbb{Z}_6]_{1,4}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 5, 1}\) | \([\mathbb{Z}_6]_{1,5}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 1, 5, 2}\) | \([\mathbb{Z}_6]_{1,5}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 1, 5, 3}\) | \([\mathbb{Z}_6]_{1,5}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 5, 4}\) | \([\mathbb{Z}_6]_{1,5}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 6, 1}\) | \([\mathbb{Z}_6]_{1,6}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 1, 6, 2}\) | \([\mathbb{Z}_6]_{1,6}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 1, 6, 3}\) | \([\mathbb{Z}_6]_{1,6}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 1, 6, 4}\) | \([\mathbb{Z}_6]_{1,6}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 1, 1}\) | \([\mathbb{Z}_6]_{2,1}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 2, 1, 2}\) | \([\mathbb{Z}_6]_{2,1}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 2, 1, 3}\) | \([\mathbb{Z}_6]_{2,1}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 1, 4}\) | \([\mathbb{Z}_6]_{2,1}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 2, 1}\) | \([\mathbb{Z}_6]_{2,2}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 2, 2, 2}\) | \([\mathbb{Z}_6]_{2,2}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 2, 2, 3}\) | \([\mathbb{Z}_6]_{2,2}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 2, 4}\) | \([\mathbb{Z}_6]_{2,2}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 3, 1}\) | \([\mathbb{Z}_6]_{2,3}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 2, 3, 2}\) | \([\mathbb{Z}_6]_{2,3}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 2, 3, 3}\) | \([\mathbb{Z}_6]_{2,3}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 3, 4}\) | \([\mathbb{Z}_6]_{2,3}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 4, 1}\) | \([\mathbb{Z}_6]_{2,4}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 2, 4, 2}\) | \([\mathbb{Z}_6]_{2,4}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 2, 4, 3}\) | \([\mathbb{Z}_6]_{2,4}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 4, 4}\) | \([\mathbb{Z}_6]_{2,4}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 5, 1}\) | \([\mathbb{Z}_6]_{2,5}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 2, 5, 2}\) | \([\mathbb{Z}_6]_{2,5}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 2, 5, 3}\) | \([\mathbb{Z}_6]_{2,5}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 5, 4}\) | \([\mathbb{Z}_6]_{2,5}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 6, 1}\) | \([\mathbb{Z}_6]_{2,6}^{1}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{1, 2, 6, 2}\) | \([\mathbb{Z}_6]_{2,6}^{2}\) | 6 | 6. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{1, 2, 6, 3}\) | \([\mathbb{Z}_6]_{2,6}^{3}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 2, 6, 4}\) | \([\mathbb{Z}_6]_{2,6}^{4}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 3, 0, 1}\) | \([\mathbb{Z}_6]_{3,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{1, 3, 0, 2}\) | \([\mathbb{Z}_6]_{3,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 3, 0, 3}\) | \([\mathbb{Z}_6]_{3,0}^{3}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 3, 0, 4}\) | \([\mathbb{Z}_6]_{3,0}^{4}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 4, 0, 1}\) | \([\mathbb{Z}_6]_{4,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{1, 4, 0, 2}\) | \([\mathbb{Z}_6]_{4,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 4, 0, 3}\) | \([\mathbb{Z}_6]_{4,0}^{3}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 4, 0, 4}\) | \([\mathbb{Z}_6]_{4,0}^{4}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 5, 0, 1}\) | \([\mathbb{Z}_6]_{5,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{1, 5, 0, 2}\) | \([\mathbb{Z}_6]_{5,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 5, 0, 3}\) | \([\mathbb{Z}_6]_{5,0}^{3}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 5, 0, 4}\) | \([\mathbb{Z}_6]_{5,0}^{4}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 6, 0, 1}\) | \([\mathbb{Z}_6]_{6,0}^{1}\) | 6 | 6. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{1, 6, 0, 2}\) | \([\mathbb{Z}_6]_{6,0}^{2}\) | 6 | 6. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{1, 6, 0, 3}\) | \([\mathbb{Z}_6]_{6,0}^{3}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{1, 6, 0, 4}\) | \([\mathbb{Z}_6]_{6,0}^{4}\) | 6 | 6. | data | |||||
\(\text{FC}^{6, 1, 4}_{2, 1, 0, 1}\) | \([\text{MR}_6]_{1,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{2, 1, 0, 2}\) | \([\text{MR}_6]_{1,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{2, 1, 0, 3}\) | \([\text{MR}_6]_{1,0}^{3}\) | 6 | 8. | data | |||||
\(\text{FC}^{6, 1, 4}_{2, 2, 0, 1}\) | \([\text{MR}_6]_{2,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{2, 2, 0, 2}\) | \([\text{MR}_6]_{2,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{2, 2, 0, 3}\) | \([\text{MR}_6]_{2,0}^{3}\) | 6 | 8. | data | |||||
\(\text{FC}^{6, 1, 4}_{2, 3, 0, 1}\) | \([\text{MR}_6]_{3,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{2, 3, 0, 2}\) | \([\text{MR}_6]_{3,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{2, 3, 0, 3}\) | \([\text{MR}_6]_{3,0}^{3}\) | 6 | 8. | data | |||||
\(\text{FC}^{6, 1, 4}_{2, 4, 0, 1}\) | \([\text{MR}_6]_{4,0}^{1}\) | 6 | 8. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{2, 4, 0, 2}\) | \([\text{MR}_6]_{4,0}^{2}\) | 6 | 8. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{2, 4, 0, 3}\) | \([\text{MR}_6]_{4,0}^{3}\) | 6 | 8. | data | |||||
\(\text{FC}^{6, 1, 4}_{3, 1, 0, 1}\) | \([\text{TY}( \mathbb{Z}_5)]_{1,0}^{1}\) | 6 | 10. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{3, 1, 0, 2}\) | \([\text{TY}( \mathbb{Z}_5)]_{1,0}^{2}\) | 6 | 10. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{3, 2, 0, 1}\) | \([\text{TY}( \mathbb{Z}_5)]_{2,0}^{1}\) | 6 | 10. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{3, 2, 0, 2}\) | \([\text{TY}( \mathbb{Z}_5)]_{2,0}^{2}\) | 6 | 10. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{3, 3, 0, 1}\) | \([\text{TY}( \mathbb{Z}_5)]_{3,0}^{1}\) | 6 | 10. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{3, 3, 0, 2}\) | \([\text{TY}( \mathbb{Z}_5)]_{3,0}^{2}\) | 6 | 10. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{3, 4, 0, 1}\) | \([\text{TY}( \mathbb{Z}_5)]_{4,0}^{1}\) | 6 | 10. | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{3, 4, 0, 2}\) | \([\text{TY}( \mathbb{Z}_5)]_{4,0}^{2}\) | 6 | 10. | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 1, 1, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,1}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{5, 1, 1, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,1}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 1, 2, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,2}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{5, 1, 2, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,2}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 1, 3, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,3}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{5, 1, 3, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,3}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 1, 4, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,4}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{6, 1, 4}_{5, 1, 4, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,4}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 1, 5, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,5}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{5, 1, 5, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,5}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 1, 6, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,6}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{5, 1, 6, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{1,6}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 2, 1, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,1}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{5, 2, 1, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,1}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 2, 2, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,2}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{5, 2, 2, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,2}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 2, 3, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,3}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{5, 2, 3, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,3}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 2, 4, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,4}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{6, 1, 4}_{5, 2, 4, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,4}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 2, 5, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,5}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{5, 2, 5, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,5}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 2, 6, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,6}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{6, 1, 4}_{5, 2, 6, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{2,6}^{2}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 3, 0, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{3,0}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{5, 3, 0, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{3,0}^{2}\) | 6 | 10.8541 | data | |||||
\(\text{FC}^{6, 1, 4}_{5, 4, 0, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{4,0}^{1}\) | 6 | 10.8541 | data | ![]() |
![]() |
|||
\(\text{FC}^{6, 1, 4}_{5, 4, 0, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{4,0}^{2}\) | 6 | 10.8541 | data | |||||
\(\text{FC}^{6, 1, 4}_{5, 5, 0, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{5,0}^{1}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 5, 0, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{5,0}^{2}\) | 6 | 10.8541 | data | |||||
\(\text{FC}^{6, 1, 4}_{5, 6, 0, 1}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{6,0}^{1}\) | 6 | 10.8541 | data | ![]() |
||||
\(\text{FC}^{6, 1, 4}_{5, 6, 0, 2}\) | \([\text{Fib} \otimes \mathbb{Z}_3]_{6,0}^{2}\) | 6 | 10.8541 | data | |||||
\(\text{FC}^{7, 1, 0}_{1, 1, 1, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,1}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 1, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,1}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 2, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,2}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 2, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,2}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 3, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,3}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 3, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,3}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 4, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,4}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 4, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,4}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 5, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,5}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 5, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,5}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 6, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,6}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 6, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,6}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 7, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,7}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 7, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,7}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 1, 8, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,8}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 1, 8, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{1,8}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 1, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,1}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 1, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,1}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 2, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,2}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 2, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,2}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 3, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,3}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 3, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,3}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 4, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,4}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 4, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,4}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 5, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,5}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 5, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,5}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 6, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,6}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 6, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,6}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 7, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,7}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 7, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,7}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 2, 8, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,8}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 2, 8, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{2,8}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 3, 1, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,1}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 3, 1, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,1}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 3, 2, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,2}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 3, 2, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,2}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 3, 3, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,3}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 3, 3, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,3}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 3, 4, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,4}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 3, 4, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{3,4}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 4, 1, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,1}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 4, 1, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,1}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 4, 2, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,2}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 4, 2, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,2}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 4, 3, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,3}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 4, 3, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,3}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 4, 4, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,4}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{1, 4, 4, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{4,4}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{1, 5, 0, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{5,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 0}_{1, 5, 0, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{5,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 0}_{1, 6, 0, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{6,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 0}_{1, 6, 0, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{6,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 0}_{1, 7, 0, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{7,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 0}_{1, 7, 0, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{7,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 0}_{1, 8, 0, 1}\) | \([\text{Adj}( \text{SO}(16)_2)]_{8,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 0}_{1, 8, 0, 2}\) | \([\text{Adj}( \text{SO}(16)_2)]_{8,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 0}_{6, 1, 1, 1}\) | \([\text{Adj}( \text{SO}(11)_2)]_{1,1}^{1}\) | 7 | 22. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{6, 1, 2, 1}\) | \([\text{Adj}( \text{SO}(11)_2)]_{1,2}^{1}\) | 7 | 22. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{6, 1, 3, 1}\) | \([\text{Adj}( \text{SO}(11)_2)]_{1,3}^{1}\) | 7 | 22. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{6, 2, 0, 1}\) | \([\text{Adj}( \text{SO}(11)_2)]_{2,0}^{1}\) | 7 | 22. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 0}_{6, 3, 0, 1}\) | \([\text{Adj}( \text{SO}(11)_2)]_{3,0}^{1}\) | 7 | 22. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 0}_{7, 1, 1, 1}\) | \([\text{SU}(2)_6]_{1,1}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{7, 1, 1, 2}\) | \([\text{SU}(2)_6]_{1,1}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 1, 2, 1}\) | \([\text{SU}(2)_6]_{1,2}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{7, 1, 2, 2}\) | \([\text{SU}(2)_6]_{1,2}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 1, 3, 1}\) | \([\text{SU}(2)_6]_{1,3}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{7, 1, 3, 2}\) | \([\text{SU}(2)_6]_{1,3}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 1, 4, 1}\) | \([\text{SU}(2)_6]_{1,4}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{7, 1, 4, 2}\) | \([\text{SU}(2)_6]_{1,4}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 1, 1}\) | \([\text{SU}(2)_6]_{2,1}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 1, 2}\) | \([\text{SU}(2)_6]_{2,1}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 2, 1}\) | \([\text{SU}(2)_6]_{2,2}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 2, 2}\) | \([\text{SU}(2)_6]_{2,2}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 3, 1}\) | \([\text{SU}(2)_6]_{2,3}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 3, 2}\) | \([\text{SU}(2)_6]_{2,3}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 4, 1}\) | \([\text{SU}(2)_6]_{2,4}^{1}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{7, 2, 4, 2}\) | \([\text{SU}(2)_6]_{2,4}^{2}\) | 7 | 27.3137 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{8, 1, 1, 1}\) | \([\text{FR}^{7,1,0}_{8}]_{1,1}^{1}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{8, 1, 1, 2}\) | \([\text{FR}^{7,1,0}_{8}]_{1,1}^{2}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{8, 1, 2, 1}\) | \([\text{FR}^{7,1,0}_{8}]_{1,2}^{1}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{8, 1, 2, 2}\) | \([\text{FR}^{7,1,0}_{8}]_{1,2}^{2}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{8, 2, 1, 1}\) | \([\text{FR}^{7,1,0}_{8}]_{2,1}^{1}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{8, 2, 1, 2}\) | \([\text{FR}^{7,1,0}_{8}]_{2,1}^{2}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{8, 2, 2, 1}\) | \([\text{FR}^{7,1,0}_{8}]_{2,2}^{1}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{8, 2, 2, 2}\) | \([\text{FR}^{7,1,0}_{8}]_{2,2}^{2}\) | 7 | 28. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{14, 1, 1, 1}\) | \([\text{PSU}(2)_{12}]_{1,1}^{1}\) | 7 | 70.6848 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{14, 1, 2, 1}\) | \([\text{PSU}(2)_{12}]_{1,2}^{1}\) | 7 | 70.6848 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{14, 2, 1, 1}\) | \([\text{PSU}(2)_{12}]_{2,1}^{1}\) | 7 | 70.6848 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{14, 2, 2, 1}\) | \([\text{PSU}(2)_{12}]_{2,2}^{1}\) | 7 | 70.6848 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{14, 3, 1, 1}\) | \([\text{PSU}(2)_{12}]_{3,1}^{1}\) | 7 | 70.6848 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{14, 3, 2, 1}\) | \([\text{PSU}(2)_{12}]_{3,2}^{1}\) | 7 | 70.6848 | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 0}_{17, 1, 1, 1}\) | \([\text{PSU}(2)_{13}]_{1,1}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{17, 1, 2, 1}\) | \([\text{PSU}(2)_{13}]_{1,2}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 0}_{17, 2, 1, 1}\) | \([\text{PSU}(2)_{13}]_{2,1}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{17, 2, 2, 1}\) | \([\text{PSU}(2)_{13}]_{2,2}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{17, 3, 1, 1}\) | \([\text{PSU}(2)_{13}]_{3,1}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{17, 3, 2, 1}\) | \([\text{PSU}(2)_{13}]_{3,2}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{17, 4, 1, 1}\) | \([\text{PSU}(2)_{13}]_{4,1}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 0}_{17, 4, 2, 1}\) | \([\text{PSU}(2)_{13}]_{4,2}^{1}\) | 7 | 86.7508 | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{3, 1, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{1,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 1, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{1,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 2, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{2,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 2, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{2,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 3, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{3,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 3, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{3,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 4, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{4,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 4, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{4,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 5, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{5,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 5, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{5,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 6, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{6,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 6, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{6,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 7, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{7,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 7, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{7,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{3, 8, 0, 1}\) | \([\text{FR}^{7,1,2}_{3}]_{8,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{3, 8, 0, 2}\) | \([\text{FR}^{7,1,2}_{3}]_{8,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{4, 1, 1, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,1}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 1, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,1}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 2, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,2}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 2, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,2}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 3, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,3}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 3, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,3}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 4, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,4}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 4, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,4}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 5, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,5}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 5, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,5}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 6, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,6}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 6, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,6}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 7, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,7}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 7, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,7}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 1, 8, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{1,8}^{1}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 2}_{4, 1, 8, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{1,8}^{2}\) | 7 | 16. | data | ![]() |
![]() |
![]() |
||
\(\text{FC}^{7, 1, 2}_{4, 2, 0, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{2,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{4, 2, 0, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{2,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{4, 3, 0, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{3,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{4, 3, 0, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{3,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{4, 4, 0, 1}\) | \([\text{FR}^{7,1,2}_{4}]_{4,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 2}_{4, 4, 0, 2}\) | \([\text{FR}^{7,1,2}_{4}]_{4,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{12, 1, 0, 1}\) | \([\text{FR}^{7,1,2}_{12}]_{1,0}^{1}\) | 7 | 28. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{12, 1, 0, 2}\) | \([\text{FR}^{7,1,2}_{12}]_{1,0}^{2}\) | 7 | 28. | data | |||||
\(\text{FC}^{7, 1, 2}_{12, 2, 0, 1}\) | \([\text{FR}^{7,1,2}_{12}]_{2,0}^{1}\) | 7 | 28. | data | ![]() |
||||
\(\text{FC}^{7, 1, 2}_{12, 2, 0, 2}\) | \([\text{FR}^{7,1,2}_{12}]_{2,0}^{2}\) | 7 | 28. | data | |||||
\(\text{FC}^{7, 1, 4}_{1, 1, 0, 1}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{1,0}^{1}\) | 7 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{1, 1, 0, 2}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{1,0}^{2}\) | 7 | 12. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{1, 2, 0, 1}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{2,0}^{1}\) | 7 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{1, 2, 0, 2}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{2,0}^{2}\) | 7 | 12. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{1, 3, 0, 1}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{3,0}^{1}\) | 7 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{1, 3, 0, 2}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{3,0}^{2}\) | 7 | 12. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{1, 4, 0, 1}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{4,0}^{1}\) | 7 | 12. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{1, 4, 0, 2}\) | \([\text{TY}( \mathbb{Z}_2\times \mathbb{Z}_3)]_{4,0}^{2}\) | 7 | 12. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{3, 1, 0, 1}\) | \([\text{FR}^{7,1,4}_{3}]_{1,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{3, 1, 0, 2}\) | \([\text{FR}^{7,1,4}_{3}]_{1,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{3, 2, 0, 1}\) | \([\text{FR}^{7,1,4}_{3}]_{2,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{3, 2, 0, 2}\) | \([\text{FR}^{7,1,4}_{3}]_{2,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{3, 3, 0, 1}\) | \([\text{FR}^{7,1,4}_{3}]_{3,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{3, 3, 0, 2}\) | \([\text{FR}^{7,1,4}_{3}]_{3,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 4}_{3, 4, 0, 1}\) | \([\text{FR}^{7,1,4}_{3}]_{4,0}^{1}\) | 7 | 16. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 4}_{3, 4, 0, 2}\) | \([\text{FR}^{7,1,4}_{3}]_{4,0}^{2}\) | 7 | 16. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 1, 1}\) | \([\mathbb{Z}_7]_{1,1}^{1}\) | 7 | 7. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 6}_{1, 1, 1, 2}\) | \([\mathbb{Z}_7]_{1,1}^{2}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 1, 3}\) | \([\mathbb{Z}_7]_{1,1}^{3}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 1, 4}\) | \([\mathbb{Z}_7]_{1,1}^{4}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 2, 1}\) | \([\mathbb{Z}_7]_{1,2}^{1}\) | 7 | 7. | data | ![]() |
![]() |
![]() |
![]() |
![]() |
\(\text{FC}^{7, 1, 6}_{1, 1, 2, 2}\) | \([\mathbb{Z}_7]_{1,2}^{2}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 2, 3}\) | \([\mathbb{Z}_7]_{1,2}^{3}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 2, 4}\) | \([\mathbb{Z}_7]_{1,2}^{4}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 1, 3, 1}\) | \([\mathbb{Z}_7]_{1,3}^{1}\) | 7 | 7. | data | ![]() |
![]() |
![]() |
![]() |
|
\(\text{FC}^{7, 1, 6}_{1, 1, 3, 2}\) | \([\mathbb{Z}_7]_{1,3}^{2}\) | 7 | 7. | data | ![]() |
||||
\(\text{FC}^{7, 1, 6}_{1, 2, 0, 1}\) | \([\mathbb{Z}_7]_{2,0}^{1}\) | 7 | 7. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 6}_{1, 2, 0, 2}\) | \([\mathbb{Z}_7]_{2,0}^{2}\) | 7 | 7. | data | |||||
\(\text{FC}^{7, 1, 6}_{1, 2, 0, 3}\) | \([\mathbb{Z}_7]_{2,0}^{3}\) | 7 | 7. | data | |||||
\(\text{FC}^{7, 1, 6}_{1, 2, 0, 4}\) | \([\mathbb{Z}_7]_{2,0}^{4}\) | 7 | 7. | data | |||||
\(\text{FC}^{7, 1, 6}_{1, 3, 0, 1}\) | \([\mathbb{Z}_7]_{3,0}^{1}\) | 7 | 7. | data | ![]() |
![]() |
|||
\(\text{FC}^{7, 1, 6}_{1, 3, 0, 2}\) | \([\mathbb{Z}_7]_{3,0}^{2}\) | 7 | 7. | data | |||||
\(\text{FC}^{7, 1, 6}_{1, 3, 0, 3}\) | \([\mathbb{Z}_7]_{3,0}^{3}\) | 7 | 7. | data | |||||
\(\text{FC}^{7, 1, 6}_{1, 3, 0, 4}\) | \([\mathbb{Z}_7]_{3,0}^{4}\) | 7 | 7. | data |
In the future we plan to:
- create some pages that give a clearer overview of the solutions
- add the solutions to the pages of the fusion rings
- Keep adding categories, of course :)