\([\text{Trivial}]_{1,1,1}\) |
1 |
1. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{1,1,1}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{1,1,2}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{1,2,1}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{1,2,2}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{2,1,1}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{2,1,2}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{2,2,1}\) |
2 |
2. |
data |
|
|
|
|
|
\([\mathbb{Z}_2]_{2,2,2}\) |
2 |
2. |
data |
|
|
|
|
|
\([\text{Fib}]_{1,1,1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Fib}]_{1,2,1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Fib}]_{2,1,1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Fib}]_{2,2,1}\) |
2 |
3.61803 |
data |
|
|
|
|
|
\([\text{Ising}]_{1,1,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,1,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,2,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,2,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,3,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,3,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,4,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{1,4,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,1,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,1,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,2,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,2,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,3,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,3,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,4,1}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Ising}]_{2,4,2}\) |
3 |
4. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{1,1,1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{1,2,1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{1,3,1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{2,0,1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{Rep}( D_3)]_{3,0,1}\) |
3 |
6. |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{1,1,1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{1,2,1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{2,1,1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{2,2,1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{3,1,1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\text{PSU}(2)_5]_{3,2,1}\) |
3 |
9.2959 |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{1,1,1}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{1,1,2}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{1,2,1}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{1,2,2}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{1,3,1}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{1,3,2}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{2,0,1}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{2,0,2}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{3,0,1}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_3]_{3,0,2}\) |
3 |
3. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,1,4}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,2,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,2,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,2,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,3,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,3,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,3,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,4,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,4,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,4,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,5,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,5,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,5,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,6,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,6,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,6,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{1,6,4}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,1,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,1,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,1,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,2,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,2,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,3,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,3,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,4,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,4,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{2,4,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{3,0,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{3,0,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{3,0,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{4,0,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \mathbb{Z}_2]_{4,0,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,1,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,1,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,2,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,2,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,3,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,3,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,4,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{1,4,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,1,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,1,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,2,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,2,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,3,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,3,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,4,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{2,4,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,1,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,1,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,2,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,2,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,3,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,3,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,4,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{3,4,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,1,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,1,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,2,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,2,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,3,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,3,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,4,1}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{SU}(2)_3]_{4,4,2}\) |
4 |
7.23607 |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{1,1,1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{1,2,1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{1,3,1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{2,0,1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{Rep}( D_5)]_{3,0,1}\) |
4 |
10. |
data |
|
|
|
|
|
\([\text{PSU}(2)_6]_{1,1,1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{PSU}(2)_6]_{2,1,1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{1,1,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{1,2,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{1,3,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{2,1,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{2,2,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{2,3,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{2,4,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{3,1,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{3,2,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Fib}]_{3,3,1}\) |
4 |
13.0902 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{1,1,1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{1,2,1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{2,1,1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{2,2,1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{3,1,1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\text{PSU}(2)_7]_{3,2,1}\) |
4 |
19.2344 |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,1,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,1,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,1,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,2,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,2,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,2,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,3,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,3,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,3,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,4,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,4,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{1,4,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,1,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,1,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,1,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,2,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,2,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,2,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,3,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,3,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,3,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,4,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,4,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{2,4,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{3,0,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{3,0,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{3,0,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{4,0,1}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{4,0,2}\) |
4 |
4. |
data |
|
|
|
|
|
\([\mathbb{Z}_4]_{4,0,3}\) |
4 |
4. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{1,0,1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{1,0,2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{2,0,1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{2,0,2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{3,0,1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{3,0,2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{4,0,1}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{TY}(\mathbb{Z}_3)]_{4,0,2}\) |
4 |
6. |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{1,0,1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{2,0,1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{3,0,1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Pseudo PSU}(2)_6]_{4,0,1}\) |
4 |
13.6569 |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,1,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,1,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,2,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,2,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,3,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,3,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,4,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,4,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,5,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,5,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,6,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{1,6,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,1,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,1,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,2,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,2,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,3,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,3,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,4,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{2,4,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,1,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,1,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,2,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,2,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,3,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,3,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,4,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{3,4,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,1,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,1,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,2,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,2,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,3,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,3,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,4,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,4,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,5,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,5,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,6,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( D_4)]_{4,6,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,1,1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,1,2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,2,1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{1,2,2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,1,1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,1,2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,2,1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{SU}(2)_4]_{2,2,2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{1,1,1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{1,2,1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{1,3,1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{2,0,1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( D_7)]_{3,0,1}\) |
5 |
14. |
data |
|
|
|
|
|
\([\text{Rep}( S_4)]_{1,1,1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\text{Rep}( S_4)]_{2,1,1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{1,1,1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{1,2,1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{2,1,1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_8]_{2,2,1}\) |
5 |
26.1803 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{1,1,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{1,2,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{2,1,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{2,2,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{3,1,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{3,2,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{4,1,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{4,2,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{5,1,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{PSU}(2)_9]_{5,2,1}\) |
5 |
34.6464 |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{1,0,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{1,0,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{2,0,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{2,0,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{3,0,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{3,0,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{4,0,1}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_4)]_{4,0,2}\) |
5 |
8. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{1,0,1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{1,0,2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{2,0,1}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SU}(2)_4]_{2,0,2}\) |
5 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo Rep}( S_4)]_{1,0,1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\text{Pseudo Rep}( S_4)]_{2,0,1}\) |
5 |
24. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,1,1}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,1,2}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,1,3}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,2,1}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,2,2}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,2,3}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,3,1}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{1,3,2}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{2,0,1}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{2,0,2}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{2,0,3}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{3,0,1}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{3,0,2}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_5]_{3,0,3}\) |
5 |
5. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,1,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,1,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,1,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,1,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,2,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,2,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,2,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,2,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,3,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,3,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,3,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,3,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,4,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,4,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,4,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,4,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,5,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,5,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,5,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,5,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,6,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,6,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,6,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,6,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,7,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,7,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,7,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,7,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,8,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,8,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,8,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{1,8,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,1,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,1,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,1,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,2,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,2,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,2,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,2,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,3,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,3,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,3,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,4,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,4,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,4,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,5,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,5,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,5,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,5,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,6,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,6,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{2,6,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,1,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,1,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,1,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,2,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,2,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,2,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,2,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,3,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,3,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,3,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,4,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,4,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,4,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,5,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,5,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,5,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,5,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,6,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,6,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{3,6,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{4,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{4,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{4,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{4,0,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{5,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{5,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{5,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{6,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{6,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\mathbb{Z}_2\otimes \text{Ising}]_{6,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,1,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,1,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,2,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,2,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,3,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,3,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,4,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,4,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,5,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,5,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,6,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{1,6,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,1,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,1,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,2,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,2,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,3,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,3,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,4,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,4,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,5,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,5,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,6,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{2,6,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{3,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{3,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{4,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{4,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{5,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{5,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{6,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\left.\mathbb{Z}_2\otimes \text{Rep}(D_3\right)]_{6,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,1,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,1,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,2,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,2,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,3,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,3,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,4,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,4,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,5,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,5,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,6,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,6,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,7,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,7,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,8,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{1,8,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,1,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,1,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,2,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,2,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,3,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,3,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,4,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,4,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,5,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,5,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,6,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,6,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,7,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,7,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,8,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{2,8,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,1,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,1,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,2,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,2,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,3,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,3,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,4,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,4,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,5,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,5,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,6,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,6,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,7,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,7,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,8,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{3,8,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,1,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,1,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,2,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,2,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,3,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,3,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,4,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,4,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,5,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,5,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,6,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,6,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,7,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,7,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,8,1}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib}\otimes\text{Ising}]_{4,8,2}\) |
6 |
14.4721 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{1,1,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{1,2,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{1,3,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{1,4,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{1,5,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{1,6,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{2,1,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{2,2,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{2,3,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{2,4,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{2,5,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{Rep}( D_3)]_{2,6,1}\) |
6 |
21.7082 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,1,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,1,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,2,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,2,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,3,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,3,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,4,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{1,4,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,1,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,1,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,2,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,2,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,3,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,3,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,4,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{2,4,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,1,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,1,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,2,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,2,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,3,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,3,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,4,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{3,4,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,1,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,1,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,2,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,2,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,3,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,3,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,4,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{4,4,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,1,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,1,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,2,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,2,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,3,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,3,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,4,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{5,4,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,1,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,1,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,2,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,2,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,3,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,3,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,4,1}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{SU}(2)_5]_{6,4,2}\) |
6 |
18.5918 |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,1,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,2,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,3,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,4,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{1,5,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{2,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{3,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{4,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( \mathbb{Z}_3\rtimes D_3)]_{5,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,1,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,2,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,3,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,4,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{1,5,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{2,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{3,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{4,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{Rep}( D_9)]_{5,0,1}\) |
6 |
18. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{1,1,1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{1,1,2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{2,1,1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{2,1,2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{3,1,1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{3,1,2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{4,1,1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{SO}(5)_2]_{4,1,2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{1,1,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{1,2,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{1,3,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{1,4,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{2,1,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{2,2,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{2,3,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{2,4,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{3,1,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{3,2,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{3,3,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{3,4,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{4,1,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{4,2,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{4,3,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{4,4,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{5,1,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{5,2,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{5,3,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{5,4,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{6,1,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{6,2,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{6,3,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \text{PSU}(2)_5]_{6,4,1}\) |
6 |
33.6329 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{1,1,1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{1,2,1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{2,1,1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{10}]_{2,2,1}\) |
6 |
44.7846 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{1,1,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{1,2,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{2,1,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{2,2,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{3,1,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{3,2,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{4,1,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{4,2,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{5,1,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{5,2,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{6,1,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{11}]_{6,2,1}\) |
6 |
56.7468 |
data |
|
|
|
|
|
\([D_3]_{1,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{1,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{2,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{2,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{3,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{3,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{4,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{4,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{5,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{5,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{6,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([D_3]_{6,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{1,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{1,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{1,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{2,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{2,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{2,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{2,0,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{3,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{3,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{3,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{4,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{4,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{4,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{4,0,4}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{5,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{5,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{5,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{6,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{6,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_4 ]_{\mathbf{1}|0}^{\mathrm{Id}}]_{6,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,1,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,1,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,1,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,2,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,2,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,2,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,3,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,3,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,3,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,4,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,4,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,4,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,5,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,5,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,5,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,6,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,6,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,6,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,7,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,7,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,7,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,8,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,8,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{1,8,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{2,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{2,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([[ \mathbb{Z}_2 \trianglelefteq \mathbb{Z}_2 \otimes \mathbb{Z}_2 ]_{\mathbf{3}|0}^{\mathrm{Id}}]_{2,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,1,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,1,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,2,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,2,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,3,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,3,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,4,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,4,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,5,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,5,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,6,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{1,6,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,1,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,1,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,2,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,2,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,3,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,3,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,4,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,4,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,5,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,5,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,6,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{2,6,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{3,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{3,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{4,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{4,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{5,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{5,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{6,0,1}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Rep}( \text{Dic}_{12})]_{6,0,2}\) |
6 |
12. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{1,0,1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{1,0,2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{2,0,1}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{Pseudo SO(5})_2]_{2,0,2}\) |
6 |
20. |
data |
|
|
|
|
|
\([\text{HI}( \mathbb{Z}_3)]_{1,0,1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\text{HI}( \mathbb{Z}_3)]_{2,0,1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\text{HI}( \mathbb{Z}_3)]_{3,0,1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\text{HI}( \mathbb{Z}_3)]_{4,0,1}\) |
6 |
35.725 |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,1,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,1,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,1,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,1,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,2,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,2,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,2,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,2,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,3,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,3,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,3,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,3,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,4,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,4,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,4,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,4,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,5,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,5,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,5,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,5,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,6,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,6,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,6,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{1,6,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,1,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,1,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,1,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,1,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,2,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,2,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,2,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,2,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,3,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,3,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,3,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,3,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,4,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,4,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,4,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,4,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,5,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,5,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,5,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,5,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,6,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,6,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,6,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{2,6,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{3,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{3,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{3,0,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{3,0,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{4,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{4,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{4,0,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{4,0,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{5,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{5,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{5,0,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{5,0,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{6,0,1}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{6,0,2}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{6,0,3}\) |
6 |
6. |
data |
|
|
|
|
|
\([\mathbb{Z}_6]_{6,0,4}\) |
6 |
6. |
data |
|
|
|
|
|
\([\text{MR}_6]_{1,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{1,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{1,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{2,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{2,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{2,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{3,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{3,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{3,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{4,0,1}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{4,0,2}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{MR}_6]_{4,0,3}\) |
6 |
8. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{1,0,1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{1,0,2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{2,0,1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{2,0,2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{3,0,1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{3,0,2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{4,0,1}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_5)]_{4,0,2}\) |
6 |
10. |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,1,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,1,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,2,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,2,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,3,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,3,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,4,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,4,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,5,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,5,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,6,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{1,6,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,1,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,1,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,2,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,2,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,3,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,3,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,4,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,4,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,5,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,5,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,6,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{2,6,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{3,1,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{3,0,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{4,0,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{4,0,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{5,0,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{5,0,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{6,0,1}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Fib} \otimes \mathbb{Z}_3]_{6,0,2}\) |
6 |
10.8541 |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,1,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,1,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,2,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,2,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,3,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,3,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,4,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{1,4,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,1,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,1,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,2,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,2,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,3,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,3,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,4,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{2,4,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,1,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,1,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,2,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,2,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,3,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,3,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,4,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,4,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,5,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,5,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,6,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,6,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,7,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,7,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,8,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{3,8,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,1,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,1,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,2,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,2,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,3,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,3,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,4,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,4,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,5,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,5,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,6,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,6,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,7,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,7,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,8,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{4,8,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{5,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{5,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{6,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{6,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{7,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{7,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{8,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(16)_2)]_{8,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{1,1,1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{1,2,1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{1,3,1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{2,0,1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{Adj}( \text{SO}(11)_2)]_{3,0,1}\) |
7 |
22. |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,1,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,1,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,2,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,2,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,3,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,3,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,4,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{1,4,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,1,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,1,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,2,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,2,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,3,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,3,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,4,1}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([\text{SU}(2)_6]_{2,4,2}\) |
7 |
27.3137 |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{1,1,1}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{1,1,2}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{1,2,1}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{1,2,2}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{2,1,1}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{2,1,2}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{2,2,1}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,0}_{8}]_{2,2,2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{1,1,1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{1,2,1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{2,1,1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{2,2,1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{3,1,1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{12}]_{3,2,1}\) |
7 |
70.6848 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{1,1,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{1,2,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{2,1,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{2,2,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{3,1,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{3,2,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{4,1,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([\text{PSU}(2)_{13}]_{4,2,1}\) |
7 |
86.7508 |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{1,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{1,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{2,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{2,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{3,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{3,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{4,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{4,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{5,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{5,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{6,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{6,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{7,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{7,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{8,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{3}]_{8,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,1,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,1,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,2,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,2,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,3,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,3,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,4,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,4,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,5,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,5,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,6,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,6,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,7,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,7,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,8,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{1,8,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{2,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{2,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{3,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{3,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{4,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{4}]_{4,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{12}]_{1,0,1}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{12}]_{1,0,2}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{12}]_{2,0,1}\) |
7 |
28. |
data |
|
|
|
|
|
\([FR^{7,1,2}_{12}]_{2,0,2}\) |
7 |
28. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{1,0,1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{1,0,2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{2,0,1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{2,0,2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{3,0,1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{3,0,2}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{4,0,1}\) |
7 |
12. |
data |
|
|
|
|
|
\([\text{TY}( \mathbb{Z}_2\otimes \mathbb{Z}_3)]_{4,0,2}\) |
7 |
12. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{1,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{1,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{2,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{2,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{3,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{3,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{4,0,1}\) |
7 |
16. |
data |
|
|
|
|
|
\([FR^{7,1,4}_{3}]_{4,0,2}\) |
7 |
16. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,1,1}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,1,2}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,1,3}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,1,4}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,2,1}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,2,2}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,2,3}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,2,4}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,3,1}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{1,3,2}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{2,0,1}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{2,0,2}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{2,0,3}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{2,0,4}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{3,0,1}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{3,0,2}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{3,0,3}\) |
7 |
7. |
data |
|
|
|
|
|
\([\mathbb{Z}_7]_{3,0,4}\) |
7 |
7. |
data |
|
|
|
|
|