Rep(Dic12): FR46,2
Fusion Rules
12345621435634216543126555661+2+63+4+566553+4+51+2+6
The fusion rules are invariant under the group generated by the following permutations:
{(3 4)}
The following elements form non-trivial sub fusion rings
Elements |
SubRing |
{1,2} |
Z2: FR12,0 |
{1,2,6} |
Rep(D3): FR23,0 |
{1,2,3,4} |
Z4: FR14,2 |
Frobenius-Perron Dimensions
Particle |
Numeric |
Symbolic |
1 |
1. |
1 |
2 |
1. |
1 |
3 |
1. |
1 |
4 |
1. |
1 |
5 |
2. |
2 |
6 |
2. |
2 |
DFP2 |
12. |
12 |
Characters
The symbolic character table is the following
111111121111−1−1311−1−1i−i411−1−1−ii52−1−210062−12−100
The numeric character table is the following
11.0001.0001.0001.0001.0001.00021.0001.0001.0001.000−1.000−1.00031.0001.000−1.000−1.0001.000i−1.000i41.0001.000−1.000−1.000−1.000i1.000i52.000−1.000−2.0001.0000062.000−1.0002.000−1.00000
Representations of SL2(Z)
This fusion ring does not provide any representations of SL2(Z).
Adjoint Subring
Elements 1,2,6, form the adjoint subring Rep(D3): FR23,0 .
The upper central series is the following:
Rep(Dic12)1,2,6⊃Rep(D3)
Universal grading
Each particle can be graded as follows: deg(1)=1′,deg(2)=1′,deg(3)=2′,deg(4)=2′,deg(5)=2′,deg(6)=1′, where the degrees form the group Z2 with multiplication table:
1′2′2′1′
Categorifications
Data
Download links for numeric data: