\(\left.\text{TY(}\mathbb{Z}_5\right):\ \text{FR}^{6,4}_{3}\)

Fusion Rules

\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{6} \\ \mathbf{3} & \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{2} & \mathbf{6} \\ \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{6} \\ \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{6} \\ \mathbf{6} & \mathbf{6} & \mathbf{6} & \mathbf{6} & \mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{4} \ \mathbf{3} \ \mathbf{5}), (\mathbf{2} \ \mathbf{5} \ \mathbf{3} \ \mathbf{4})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\}\) \(\mathbb{Z}_5:\ \text{FR}^{5,4}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(1.\) \(1\)
\(\mathbf{6}\) \(2.23607\) \(\sqrt{5}\)
\(\mathcal{D}_{FP}^2\) \(10.\) \(10\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1 & 1 & 1 & 1 & 1 & \sqrt{5} \\ 1 & 1 & 1 & 1 & 1 & -\sqrt{5} \\ 1 & e^{-\frac{2 i \pi }{5}}& e^{\frac{2 i \pi }{5}}& e^{\frac{4 i \pi }{5}}& e^{-\frac{4 i \pi }{5}}& 0 \\ 1 & e^{\frac{2 i \pi }{5}}& e^{-\frac{2 i \pi }{5}}& e^{-\frac{4 i \pi }{5}}& e^{\frac{4 i \pi }{5}}& 0 \\ 1 & e^{\frac{4 i \pi }{5}}& e^{-\frac{4 i \pi }{5}}& e^{\frac{2 i \pi }{5}}& e^{-\frac{2 i \pi }{5}}& 0 \\ 1 & e^{-\frac{4 i \pi }{5}}& e^{\frac{4 i \pi }{5}}& e^{-\frac{2 i \pi }{5}}& e^{\frac{2 i \pi }{5}}& 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 2.236 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -2.236 \\ 1.000 & 0.3090-0.9511 i & 0.3090+0.9511 i & -0.8090+0.5878 i & -0.8090-0.5878 i & 0 \\ 1.000 & 0.3090+0.9511 i & 0.3090-0.9511 i & -0.8090-0.5878 i & -0.8090+0.5878 i & 0 \\ 1.000 & -0.8090+0.5878 i & -0.8090-0.5878 i & 0.3090+0.9511 i & 0.3090-0.9511 i & 0 \\ 1.000 & -0.8090-0.5878 i & -0.8090+0.5878 i & 0.3090-0.9511 i & 0.3090+0.9511 i & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}\), form the adjoint subring \(\mathbb{Z}_5:\ \text{FR}^{5,4}_{1}\) .

The upper central series is the following: \(\left.\text{TY(}\mathbb{Z}_5\right) \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5} }{\supset} \mathbb{Z}_5 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: