\(\text{Pseudo SO(5})_2:\ \text{FR}^{6,2}_{7}\)
Fusion Rules
\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{4} & \mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{5} & \mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\ \mathbf{6} & \mathbf{5} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{4}), (\mathbf{5} \ \mathbf{6})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) | \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.\) | \(2\) |
\(\mathbf{4}\) | \(2.\) | \(2\) |
\(\mathbf{5}\) | \(2.23607\) | \(\sqrt{5}\) |
\(\mathbf{6}\) | \(2.23607\) | \(\sqrt{5}\) |
\(\mathcal{D}_{FP}^2\) | \(20.\) | \(20\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \hline 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 1 & 1 & 0 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & i & -i \\ 1 & -1 & 0 & 0 & -i & i \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.236 & 2.236 \\ 1.000 & 1.000 & 2.000 & 2.000 & -2.236 & -2.236 \\ 1.000 & 1.000 & 0 & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & 0 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 1.000 i & -1.000 i \\ 1.000 & -1.000 & 0 & 0 & -1.000 i & 1.000 i \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\), form the adjoint subring \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\) .
The upper central series is the following: \(\text{Pseudo SO(5})_2 \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \left.\text{Rep(}D_5\right)\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: