Pseudo SO(5)2: FR76,2\text{Pseudo SO(5})_2:\ \text{FR}^{6,2}_{7}

Fusion Rules

123456213465331+2+43+45+65+6443+41+2+35+65+6565+65+62+3+41+3+4655+65+61+3+42+3+4\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{4} & \mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{5} & \mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\ \mathbf{6} & \mathbf{5} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(3 4),(5 6)}\{(\mathbf{3} \ \mathbf{4}), (\mathbf{5} \ \mathbf{6})\}

The following particles form non-trivial sub fusion rings

Particles SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Rep(D5): FR34,0\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}

Quantum Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 2.2. 22
4\mathbf{4} 2.2. 22
5\mathbf{5} 2.236072.23607 5\sqrt{5}
6\mathbf{6} 2.236072.23607 5\sqrt{5}
DFP2\mathcal{D}_{FP}^2 20.20. 2020

Characters

The symbolic character table is the following

1234651122551122551101001110001100ii1100ii\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \hline 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 1 & 1 & 0 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & i & -i \\ 1 & -1 & 0 & 0 & -i & i \\ \hline \end{array}

The numeric character table is the following

1234651.0001.0002.0002.0002.2362.2361.0001.0002.0002.0002.2362.2361.0001.00001.000001.0001.0001.0000001.0001.000001.000i1.000i1.0001.000001.000i1.000i\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.236 & 2.236 \\ 1.000 & 1.000 & 2.000 & 2.000 & -2.236 & -2.236 \\ 1.000 & 1.000 & 0 & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & 0 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 1.000 i & -1.000 i \\ 1.000 & -1.000 & 0 & 0 & -1.000 i & 1.000 i \\ \hline \end{array}

Modular Data

This fusion ring does not have any matching SS-and TT-matrices.

Adjoint Subring

Particles 1,2,3,4\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, form the adjoint subring Rep(D5): FR34,0\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3} .

The upper central series is the following: Pseudo SO(5)21,2,3,4Rep(D5)\text{Pseudo SO(5})_2 \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \left.\text{Rep(}D_5\right)

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=1,deg(4)=1,deg(5)=2,deg(6)=2\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: