Pseudo SO(5 ) 2 : FR 7 6 , 2 \text{Pseudo SO(5})_2:\ \text{FR}^{6,2}_{7} Pseudo SO(5 ) 2 : FR 7 6 , 2
Fusion Rules
1 2 3 4 5 6 2 1 3 4 6 5 3 3 1 + 2 + 4 3 + 4 5 + 6 5 + 6 4 4 3 + 4 1 + 2 + 3 5 + 6 5 + 6 5 6 5 + 6 5 + 6 2 + 3 + 4 1 + 3 + 4 6 5 5 + 6 5 + 6 1 + 3 + 4 2 + 3 + 4 \begin{array}{|llllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
\mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\
\mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\
\mathbf{4} & \mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\
\mathbf{5} & \mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\
\mathbf{6} & \mathbf{5} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} \\
\hline
\end{array} 1 2 3 4 5 6 2 1 3 4 6 5 3 3 1 + 2 + 4 3 + 4 5 + 6 5 + 6 4 4 3 + 4 1 + 2 + 3 5 + 6 5 + 6 5 6 5 + 6 5 + 6 2 + 3 + 4 1 + 3 + 4 6 5 5 + 6 5 + 6 1 + 3 + 4 2 + 3 + 4
The fusion rules are invariant under the group generated by the following permutations:
{ ( 3 4 ) , ( 5 6 ) } \{(\mathbf{3} \ \mathbf{4}), (\mathbf{5} \ \mathbf{6})\} { ( 3 4 ) , ( 5 6 ) }
The following particles form non-trivial sub fusion rings
Particles
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 2 , 3 , 4 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} { 1 , 2 , 3 , 4 }
Rep( D 5 ) : FR 3 4 , 0 \left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3} Rep( D 5 ) : FR 3 4 , 0
Quantum Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
2. 2. 2 .
2 2 2
4 \mathbf{4} 4
2. 2. 2 .
2 2 2
5 \mathbf{5} 5
2.23607 2.23607 2 . 2 3 6 0 7
5 \sqrt{5} 5
6 \mathbf{6} 6
2.23607 2.23607 2 . 2 3 6 0 7
5 \sqrt{5} 5
D F P 2 \mathcal{D}_{FP}^2 D F P 2
20. 20. 2 0 .
20 20 2 0
Characters
The symbolic character table is the following
1 2 3 4 6 5 1 1 2 2 5 5 1 1 2 2 − 5 − 5 1 1 0 − 1 0 0 1 1 − 1 0 0 0 1 − 1 0 0 i − i 1 − 1 0 0 − i i \begin{array}{|cccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\
\hline
1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\
1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\
1 & 1 & 0 & -1 & 0 & 0 \\
1 & 1 & -1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & i & -i \\
1 & -1 & 0 & 0 & -i & i \\
\hline
\end{array} 1 1 1 1 1 1 1 2 1 1 1 1 − 1 − 1 3 2 2 0 − 1 0 0 4 2 2 − 1 0 0 0 6 5 − 5 0 0 i − i 5 5 − 5 0 0 − i i
The numeric character table is the following
1 2 3 4 6 5 1.000 1.000 2.000 2.000 2.236 2.236 1.000 1.000 2.000 2.000 − 2.236 − 2.236 1.000 1.000 0 − 1.000 0 0 1.000 1.000 − 1.000 0 0 0 1.000 − 1.000 0 0 1.000 i − 1.000 i 1.000 − 1.000 0 0 − 1.000 i 1.000 i \begin{array}{|rrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\
\hline
1.000 & 1.000 & 2.000 & 2.000 & 2.236 & 2.236 \\
1.000 & 1.000 & 2.000 & 2.000 & -2.236 & -2.236 \\
1.000 & 1.000 & 0 & -1.000 & 0 & 0 \\
1.000 & 1.000 & -1.000 & 0 & 0 & 0 \\
1.000 & -1.000 & 0 & 0 & 1.000 i & -1.000 i \\
1.000 & -1.000 & 0 & 0 & -1.000 i & 1.000 i \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 3 2 . 0 0 0 2 . 0 0 0 0 − 1 . 0 0 0 0 0 4 2 . 0 0 0 2 . 0 0 0 − 1 . 0 0 0 0 0 0 6 2 . 2 3 6 − 2 . 2 3 6 0 0 1 . 0 0 0 i − 1 . 0 0 0 i 5 2 . 2 3 6 − 2 . 2 3 6 0 0 − 1 . 0 0 0 i 1 . 0 0 0 i
Modular Data
This fusion ring does not have any matching S S S -and T T T -matrices.
Adjoint Subring
Particles 1 , 2 , 3 , 4 \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} 1 , 2 , 3 , 4 , form the adjoint subring Rep( D 5 ) : FR 3 4 , 0 \left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3} Rep( D 5 ) : FR 3 4 , 0 .
The upper central series is the following:
Pseudo SO(5 ) 2 ⊃ 1 , 2 , 3 , 4 Rep( D 5 ) \text{Pseudo SO(5})_2 \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \left.\text{Rep(}D_5\right) Pseudo SO(5 ) 2 1 , 2 , 3 , 4 ⊃ Rep( D 5 )
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: