\(\text{PSU}(2)_5:\ \text{FR}^{3,0}_{3}\)

Fusion Rules

\[\begin{array}{|lll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{2} & \mathbf{1}+\mathbf{3} & \mathbf{2}+\mathbf{3} \\ \mathbf{3} & \mathbf{2}+\mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{3} \\ \hline \end{array}\]

Frobenius-Perron Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(\sin\frac{\pi}{7}/\sin\frac{\pi}{7}\)
\(\mathbf{2}\) \(1.80194\) \(\sin\frac{5\pi}{7}/\sin\frac{\pi}{7}\)
\(\mathbf{3}\) \(2.24698\) \(\sin\frac{3\pi}{7}/\sin\frac{\pi}{7}\)
\(\mathcal{D}_{FP}^2\) \(9.2959\) \(\frac{7}{4\sin(\pi/7)}\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \hline 1 & r_3 & r'_3 \\ 1 & r_2 & r'_2 \\ 1 & r_1 & r'_1 \\ \hline \end{array}\]

where \(r_i\) is the \(i\)‘th root of \(x^3-x^2-2 x+1\) and \(r'_i\) the \(i\)‘th root of \(x^2-2x^2-x+1\)

The numeric character table is the following

\[\begin{array}{|rrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \hline 1.000 & 1.802 & 2.247 \\ 1.000 & 0.4450 & -0.8019 \\ 1.000 & -1.247 & 0.5550 \\ \hline \end{array}\]

Representations of $SL_2(\mathbb{Z})$

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{2\sin(\pi/7)}{\sqrt{7}}\left(\begin{array}{ccc} 1 & D_2 & D_3 \\ D_2 & -D_3 & 1 \\ D_3 & 1 & -D_2 \end{array}\right)\) \(\begin{array}{l}\left(0,\frac{1}{7},-\frac{2}{7}\right) \\\left(0,-\frac{1}{7},\frac{2}{7}\right)\end{array}\)

where $D_i$ are the $i$’th Frobenius-Perron dimensions.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

Data

Download links for numeric data: