\(\text{SU(2})_4:\ \text{FR}^{5,0}_{3}\)

Fusion Rules

\[\begin{array}{|lllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} \\ \mathbf{3} & \mathbf{4} & \mathbf{1}+\mathbf{5} & \mathbf{2}+\mathbf{5} & \mathbf{3}+\mathbf{4} \\ \mathbf{4} & \mathbf{3} & \mathbf{2}+\mathbf{5} & \mathbf{1}+\mathbf{5} & \mathbf{3}+\mathbf{4} \\ \mathbf{5} & \mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{5} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{3} \ \mathbf{4})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{5}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.73205\) \(\sqrt{3}\)
\(\mathbf{4}\) \(1.73205\) \(\sqrt{3}\)
\(\mathbf{5}\) \(2.\) \(2\)
\(\mathcal{D}_{FP}^2\) \(12.\) \(12\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \hline 1 & 1 & \sqrt{3} & \sqrt{3} & 2 \\ 1 & 1 & 0 & 0 & -1 \\ 1 & 1 & -\sqrt{3} & -\sqrt{3} & 2 \\ 1 & -1 & 1 & -1 & 0 \\ 1 & -1 & -1 & 1 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \hline 1.000 & 1.000 & 1.732 & 1.732 & 2.000 \\ 1.000 & 1.000 & 0 & 0 & -1.000 \\ 1.000 & 1.000 & -1.732 & -1.732 & 2.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc} 1 & 1 & \sqrt{3} & \sqrt{3} & 2 \\ 1 & 1 & -\sqrt{3} & -\sqrt{3} & 2 \\ \sqrt{3} & -\sqrt{3} & \sqrt{3} & -\sqrt{3} & 0 \\ \sqrt{3} & -\sqrt{3} & -\sqrt{3} & \sqrt{3} & 0 \\ 2 & 2 & 0 & 0 & -2 \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{3}{8},-\frac{1}{8},-\frac{1}{3}\right) \\\left(0,0,-\frac{1}{8},\frac{3}{8},-\frac{1}{3}\right) \\\left(0,0,\frac{1}{8},-\frac{3}{8},\frac{1}{3}\right) \\\left(0,0,-\frac{3}{8},\frac{1}{8},\frac{1}{3}\right)\end{array}\)
\(\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc} 1 & 1 & \sqrt{3} & \sqrt{3} & 2 \\ 1 & 1 & -\sqrt{3} & -\sqrt{3} & 2 \\ \sqrt{3} & -\sqrt{3} & -\sqrt{3} & \sqrt{3} & 0 \\ \sqrt{3} & -\sqrt{3} & \sqrt{3} & -\sqrt{3} & 0 \\ 2 & 2 & 0 & 0 & -2 \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,-\frac{1}{8},\frac{3}{8},\frac{1}{3}\right) \\\left(0,0,\frac{3}{8},-\frac{1}{8},\frac{1}{3}\right) \\\left(0,0,-\frac{3}{8},\frac{1}{8},-\frac{1}{3}\right) \\\left(0,0,\frac{1}{8},-\frac{3}{8},-\frac{1}{3}\right)\end{array}\)

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{5}\), form the adjoint subring \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) .

The upper central series is the following: \(\text{SU(2})_4 \underset{ \mathbf{1}, \mathbf{2}, \mathbf{5} }{\supset} \left.\text{Rep(}D_3\right)\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{2}', \text{deg}(\mathbf{4}) = \mathbf{2}', \text{deg}(\mathbf{5}) = \mathbf{1}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: