\(\mathbb{Z}_5:\ \text{FR}^{5,4}_{1}\)

Fusion Rules

\[\begin{array}{|lllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \mathbf{2} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{4} \\ \mathbf{3} & \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{2} \\ \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} \\ \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{3} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{4} \ \mathbf{3} \ \mathbf{5}), (\mathbf{2} \ \mathbf{5} \ \mathbf{3} \ \mathbf{4})\}\]

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(1.\) \(1\)
\(\mathcal{D}_{FP}^2\) \(5.\) \(5\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccc|} \hline \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{5} & \mathbf{4} \\ \hline 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-\frac{2 i \pi }{5}} & e^{\frac{2 i \pi }{5}} & e^{\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} \\ 1 & e^{\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} & e^{\frac{4 i \pi }{5}} \\ 1 & e^{\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} & e^{\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} \\ 1 & e^{-\frac{4 i \pi }{5}} & e^{\frac{4 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} & e^{\frac{2 i \pi }{5}} \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrr|} \hline \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{5} & \mathbf{4} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 1.000 & 0.3090-0.9511 i & 0.3090+0.9511 i & -0.8090+0.5878 i & -0.8090-0.5878 i \\ 1.000 & 0.3090+0.9511 i & 0.3090-0.9511 i & -0.8090-0.5878 i & -0.8090+0.5878 i \\ 1.000 & -0.8090+0.5878 i & -0.8090-0.5878 i & 0.3090+0.9511 i & 0.3090-0.9511 i \\ 1.000 & -0.8090-0.5878 i & -0.8090+0.5878 i & 0.3090-0.9511 i & 0.3090+0.9511 i \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{1}{\sqrt{5}}\left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & e^{\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} & e^{\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} \\ 1 & e^{-\frac{4 i \pi }{5}} & e^{\frac{4 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} & e^{\frac{2 i \pi }{5}} \\ 1 & e^{\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} & e^{\frac{4 i \pi }{5}} \\ 1 & e^{-\frac{2 i \pi }{5}} & e^{\frac{2 i \pi }{5}} & e^{\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} \\\end{array}\right)\) \(\begin{array}{l}\left(0,-\frac{1}{5},-\frac{1}{5},\frac{1}{5},\frac{1}{5}\right)\end{array}\)
\(\frac{1}{\sqrt{5}}\left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & e^{\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} & e^{\frac{4 i \pi }{5}} \\ 1 & e^{-\frac{2 i \pi }{5}} & e^{\frac{2 i \pi }{5}} & e^{\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} \\ 1 & e^{-\frac{4 i \pi }{5}} & e^{\frac{4 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} & e^{\frac{2 i \pi }{5}} \\ 1 & e^{\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi }{5}} & e^{\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi }{5}} \\\end{array}\right)\) \(\begin{array}{l}\left(0,\frac{2}{5},\frac{2}{5},-\frac{2}{5},-\frac{2}{5}\right)\end{array}\)

Adjoint Subring

The adjoint subring is the trivial ring.

The upper central series is the following: \(\mathbb{Z}_5 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{4}', \text{deg}(\mathbf{5}) = \mathbf{5}'\), where the degrees form the group \(\mathbb{Z}_5\) with multiplication table:

\[\begin{array}{|lllll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' & \mathbf{5}' \\ \mathbf{2}' & \mathbf{5}' & \mathbf{1}' & \mathbf{3}' & \mathbf{4}' \\ \mathbf{3}' & \mathbf{1}' & \mathbf{4}' & \mathbf{5}' & \mathbf{2}' \\ \mathbf{4}' & \mathbf{3}' & \mathbf{5}' & \mathbf{2}' & \mathbf{1}' \\ \mathbf{5}' & \mathbf{4}' & \mathbf{2}' & \mathbf{1}' & \mathbf{3}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: