\(\mathbb{Z}_6:\ \text{FR}^{6,4}_{1}\)

Fusion Rules

\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} \\ \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{1} & \mathbf{2} & \mathbf{4} \\ \mathbf{4} & \mathbf{5} & \mathbf{1} & \mathbf{6} & \mathbf{3} & \mathbf{2} \\ \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{1} \\ \mathbf{6} & \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{5} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{5},\mathbf{6}\}\) \(\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(1.\) \(1\)
\(\mathbf{6}\) \(1.\) \(1\)
\(\mathcal{D}_{FP}^2\) \(6.\) \(6\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{2} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & -1 \\ 1 & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & -1 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{2} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 \\ 1.000 & 0.5000+0.8660 i & -0.5000-0.8660 i & 0.5000-0.8660 i & -0.5000+0.8660 i & -1.000 \\ 1.000 & 0.5000-0.8660 i & -0.5000+0.8660 i & 0.5000+0.8660 i & -0.5000-0.8660 i & -1.000 \\ 1.000 & -0.5000+0.8660 i & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.5000-0.8660 i & 1.000 \\ 1.000 & -0.5000-0.8660 i & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.5000+0.8660 i & 1.000 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the trivial ring.

The upper central series is the following: \(\mathbb{Z}_6 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{4}', \text{deg}(\mathbf{5}) = \mathbf{5}', \text{deg}(\mathbf{6}) = \mathbf{6}'\), where the degrees form the group \(\mathbb{Z}_6\) with multiplication table:

\[\begin{array}{|llllll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' & \mathbf{5}' & \mathbf{6}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{6}' & \mathbf{5}' & \mathbf{4}' & \mathbf{3}' \\ \mathbf{3}' & \mathbf{6}' & \mathbf{5}' & \mathbf{1}' & \mathbf{2}' & \mathbf{4}' \\ \mathbf{4}' & \mathbf{5}' & \mathbf{1}' & \mathbf{6}' & \mathbf{3}' & \mathbf{2}' \\ \mathbf{5}' & \mathbf{4}' & \mathbf{2}' & \mathbf{3}' & \mathbf{6}' & \mathbf{1}' \\ \mathbf{6}' & \mathbf{3}' & \mathbf{4}' & \mathbf{2}' & \mathbf{1}' & \mathbf{5}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: