\(\mathbb{Z}_7:\ \text{FR}^{7,6}_{1}\)
Fusion Rules
\[\begin{array}{|lllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\ \mathbf{2} & \mathbf{7} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{5} \\ \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{4} & \mathbf{2} \\ \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{7} & \mathbf{3} \\ \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{6} \\ \mathbf{6} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{2} & \mathbf{5} & \mathbf{1} \\ \mathbf{7} & \mathbf{5} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{1} & \mathbf{4} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{2} \ \mathbf{5} \ \mathbf{7} \ \mathbf{3} \ \mathbf{4} \ \mathbf{6}), (\mathbf{2} \ \mathbf{6} \ \mathbf{4} \ \mathbf{3} \ \mathbf{7} \ \mathbf{5})\}\]Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(1.\) | \(1\) |
\(\mathbf{6}\) | \(1.\) | \(1\) |
\(\mathbf{7}\) | \(1.\) | \(1\) |
\(\mathcal{D}_{FP}^2\) | \(7.\) | \(7\) |
Characters
The symbolic character table is the following
\[\begin{array}{|ccccccc|} \hline \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{3} & \mathbf{2} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,5\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,6\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,1\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,2\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,4\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,3\right] \\ 1 & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,6\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,5\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,2\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,1\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,3\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,4\right] \\ 1 & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,3\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,4\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,6\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,5\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,1\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,2\right] \\ 1 & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,4\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,3\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,5\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,6\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,2\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,1\right] \\ 1 & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,2\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,1\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,4\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,3\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,6\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,5\right] \\ 1 & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,1\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,2\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,3\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,4\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,5\right] & \text{Root}\left[x^6+x^5+x^4+x^3+x^2+x+1,6\right] \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrr|} \hline \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{3} & \mathbf{2} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 1.000 & 0.6235-0.7818 i & 0.6235+0.7818 i & -0.9010-0.4339 i & -0.9010+0.4339 i & -0.2225+0.9749 i & -0.2225-0.9749 i \\ 1.000 & 0.6235+0.7818 i & 0.6235-0.7818 i & -0.9010+0.4339 i & -0.9010-0.4339 i & -0.2225-0.9749 i & -0.2225+0.9749 i \\ 1.000 & -0.2225-0.9749 i & -0.2225+0.9749 i & 0.6235+0.7818 i & 0.6235-0.7818 i & -0.9010-0.4339 i & -0.9010+0.4339 i \\ 1.000 & -0.2225+0.9749 i & -0.2225-0.9749 i & 0.6235-0.7818 i & 0.6235+0.7818 i & -0.9010+0.4339 i & -0.9010-0.4339 i \\ 1.000 & -0.9010+0.4339 i & -0.9010-0.4339 i & -0.2225+0.9749 i & -0.2225-0.9749 i & 0.6235+0.7818 i & 0.6235-0.7818 i \\ 1.000 & -0.9010-0.4339 i & -0.9010+0.4339 i & -0.2225-0.9749 i & -0.2225+0.9749 i & 0.6235-0.7818 i & 0.6235+0.7818 i \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{1}{\sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] \\\end{array}\right)\) | \(\begin{array}{l}\left(0,-\frac{3}{7},-\frac{3}{7},\frac{1}{7},\frac{1}{7},\frac{2}{7},\frac{2}{7}\right)\end{array}\) |
\(\frac{1}{\sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] \\ 1 & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,6\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,5\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,10\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,9\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,2\right] & \sqrt{7} \text{Root}\left[117649 x^{12}+16807 x^{10}+2401 x^8+343 x^6+49 x^4+7 x^2+1,1\right] \\\end{array}\right)\) | \(\begin{array}{l}\left(0,\frac{3}{7},\frac{3}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7}\right)\end{array}\) |
Adjoint Subring
The adjoint subring is the trivial ring.
The upper central series is the following: \(\mathbb{Z}_7 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{4}', \text{deg}(\mathbf{5}) = \mathbf{5}', \text{deg}(\mathbf{6}) = \mathbf{6}', \text{deg}(\mathbf{7}) = \mathbf{7}'\), where the degrees form the group \(\mathbb{Z}_7\) with multiplication table:
\[\begin{array}{|lllllll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' & \mathbf{5}' & \mathbf{6}' & \mathbf{7}' \\ \mathbf{2}' & \mathbf{7}' & \mathbf{1}' & \mathbf{6}' & \mathbf{4}' & \mathbf{3}' & \mathbf{5}' \\ \mathbf{3}' & \mathbf{1}' & \mathbf{6}' & \mathbf{5}' & \mathbf{7}' & \mathbf{4}' & \mathbf{2}' \\ \mathbf{4}' & \mathbf{6}' & \mathbf{5}' & \mathbf{2}' & \mathbf{1}' & \mathbf{7}' & \mathbf{3}' \\ \mathbf{5}' & \mathbf{4}' & \mathbf{7}' & \mathbf{1}' & \mathbf{3}' & \mathbf{2}' & \mathbf{6}' \\ \mathbf{6}' & \mathbf{3}' & \mathbf{4}' & \mathbf{7}' & \mathbf{2}' & \mathbf{5}' & \mathbf{1}' \\ \mathbf{7}' & \mathbf{5}' & \mathbf{2}' & \mathbf{3}' & \mathbf{6}' & \mathbf{1}' & \mathbf{4}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: