Fib×Z3: FR56,4\text{Fib}\times \mathbb{Z}_3:\ \text{FR}^{6,4}_{5}

Fusion Rules

1234562316453125644651+43+52+65463+52+61+46542+61+43+5\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{5} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} \\ \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} \\ \mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} \\ \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(2 3)(5 6)}\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6})\}

The following elements form non-trivial sub fusion rings

Elements SubRing
{1,4}\{\mathbf{1},\mathbf{4}\} Fib: FR22,0\text{Fib}:\ \text{FR}^{2,0}_{2}
{1,2,3}\{\mathbf{1},\mathbf{2},\mathbf{3}\} Z3: FR13,2\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}

Frobenius-Perron Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.618031.61803 ϕ\phi
5\mathbf{5} 1.618031.61803 ϕ\phi
6\mathbf{6} 1.618031.61803 ϕ\phi
DFP2\mathcal{D}_{FP}^2 10.854110.8541 352+152\frac{3 \sqrt{5}}{2}+\frac{15}{2}

Here ϕ=1+52\phi = \frac{1+\sqrt{5}}{2} is the golden ratio.

Characters

The symbolic character table is the following

123654111ϕϕϕ111ϕ1ϕ1ϕ11e13(2iπ)e13(2iπ)e13(2iπ)ϕ1e13(2iπ)ϕ1ϕ11e13(2iπ)e13(2iπ)e13(2iπ)ϕ1e13(2iπ)ϕ1ϕ11e13(2iπ)e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕϕ1e13(2iπ)e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕϕ\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} \\ \hline 1 & 1 & 1 & \phi & \phi & \phi \\ 1 & 1 & 1 & -\phi^{-1} & -\phi^{-1} & -\phi^{-1} \\ 1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & - e^{-\frac{1}{3} (2 i \pi )} \phi^{-1} & - e^{\frac{1}{3} (2 i \pi )} \phi^{-1} & -\phi^{-1} \\ 1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & - e^{\frac{1}{3} (2 i \pi )} \phi^{-1} & -e^{-\frac{1}{3} (2 i \pi )} \phi^{-1} & -\phi^{-1} \\ 1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & \phi \\ 1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi & \phi \\ \hline \end{array}

The numeric character table is the following

1236541.0001.0001.0001.6181.6181.6181.0001.0001.0000.61800.61800.61801.0000.50000.8660i0.5000+0.8660i0.3090+0.5352i0.30900.5352i0.61801.0000.5000+0.8660i0.50000.8660i0.30900.5352i0.3090+0.5352i0.61801.0000.5000+0.8660i0.50000.8660i0.809+1.401i0.8091.401i1.6181.0000.50000.8660i0.5000+0.8660i0.8091.401i0.809+1.401i1.618\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} \\ \hline 1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 \\ 1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0.3090+0.5352 i & 0.3090-0.5352 i & -0.6180 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0.3090-0.5352 i & 0.3090+0.5352 i & -0.6180 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.809+1.401 i & -0.809-1.401 i & 1.618 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.809-1.401 i & -0.809+1.401 i & 1.618 \\ \hline \end{array}

Representations of SL2(Z)SL_2(\mathbb{Z})

The matching SS-matrices and twist factors are the following

SS-matrix Twist factors
1352+152(111ϕϕϕ1e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕe13(2iπ)ϕ1e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕe13(2iπ)ϕϕϕϕ111ϕe13(2iπ)ϕe13(2iπ)ϕ1e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕe13(2iπ)ϕ1e13(2iπ)e13(2iπ))\frac{1}{\sqrt{\frac{3 \sqrt{5}}{2}+\frac{15}{2}}}\left(\begin{array}{cccccc} 1 & 1 & 1 & \phi & \phi & \phi \\ 1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi \\ 1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi \\ \phi & \phi & \phi & -1 & -1 & -1 \\ \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi & -1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} \\ \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & -1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} \end{array}\right) (0,13,13,25,115,115)(0,13,13,25,415,415)\begin{array}{l}\left(0,-\frac{1}{3},-\frac{1}{3},\frac{2}{5},\frac{1}{15},\frac{1}{15}\right) \\\left(0,-\frac{1}{3},-\frac{1}{3},-\frac{2}{5},\frac{4}{15},\frac{4}{15}\right)\end{array}
1352+152(111ϕϕϕ1e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕe13(2iπ)ϕ1e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕe13(2iπ)ϕϕϕϕ111ϕe13(2iπ)ϕe13(2iπ)ϕ1e13(2iπ)e13(2iπ)ϕe13(2iπ)ϕe13(2iπ)ϕ1e13(2iπ)e13(2iπ))\frac{1}{\sqrt{\frac{3 \sqrt{5}}{2}+\frac{15}{2}}}\left(\begin{array}{cccccc} 1 & 1 & 1 & \phi & \phi & \phi \\ 1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi \\ 1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi \\ \phi & \phi & \phi & -1 & -1 & -1 \\ \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & -1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} \\ \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi & -1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} \end{array}\right) (0,13,13,25,415,415)(0,13,13,25,115,115)\begin{array}{l}\left(0,\frac{1}{3},\frac{1}{3},\frac{2}{5},-\frac{4}{15},-\frac{4}{15}\right) \\\left(0,\frac{1}{3},\frac{1}{3},-\frac{2}{5},-\frac{1}{15},-\frac{1}{15}\right)\end{array}

Adjoint Subring

Elements 1,4\mathbf{1}, \mathbf{4}, form the adjoint subring Fib: FR22,0\text{Fib}:\ \text{FR}^{2,0}_{2} .

The upper central series is the following: Fib×Z31,4Fib\text{Fib}\times \mathbb{Z}_3 \underset{ \mathbf{1}, \mathbf{4} }{\supset} \text{Fib}

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=2,deg(3)=3,deg(4)=1,deg(5)=3,deg(6)=2\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{3}', \text{deg}(\mathbf{6}) = \mathbf{2}', where the degrees form the group Z3\mathbb{Z}_3 with multiplication table:

123231312\begin{array}{|lll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' \\ \mathbf{2}' & \mathbf{3}' & \mathbf{1}' \\ \mathbf{3}' & \mathbf{1}' & \mathbf{2}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: