Fib × Z 3 : FR 5 6 , 4 \text{Fib}\times \mathbb{Z}_3:\ \text{FR}^{6,4}_{5} Fib × Z 3 : FR 5 6 , 4
Fusion Rules
1 2 3 4 5 6 2 3 1 6 4 5 3 1 2 5 6 4 4 6 5 1 + 4 3 + 5 2 + 6 5 4 6 3 + 5 2 + 6 1 + 4 6 5 4 2 + 6 1 + 4 3 + 5 \begin{array}{|llllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
\mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{5} \\
\mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} \\
\mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} \\
\mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} \\
\mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} \\
\hline
\end{array} 1 2 3 4 5 6 2 3 1 6 4 5 3 1 2 5 6 4 4 6 5 1 + 4 3 + 5 2 + 6 5 4 6 3 + 5 2 + 6 1 + 4 6 5 4 2 + 6 1 + 4 3 + 5
The fusion rules are invariant under the group generated by the following permutations:
{ ( 2 3 ) ( 5 6 ) } \{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6})\} { ( 2 3 ) ( 5 6 ) }
The following elements form non-trivial sub fusion rings
Elements
SubRing
{ 1 , 4 } \{\mathbf{1},\mathbf{4}\} { 1 , 4 }
Fib : FR 2 2 , 0 \text{Fib}:\ \text{FR}^{2,0}_{2} Fib : FR 2 2 , 0
{ 1 , 2 , 3 } \{\mathbf{1},\mathbf{2},\mathbf{3}\} { 1 , 2 , 3 }
Z 3 : FR 1 3 , 2 \mathbb{Z}_3:\ \text{FR}^{3,2}_{1} Z 3 : FR 1 3 , 2
Frobenius-Perron Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1.61803 1.61803 1 . 6 1 8 0 3
ϕ \phi ϕ
5 \mathbf{5} 5
1.61803 1.61803 1 . 6 1 8 0 3
ϕ \phi ϕ
6 \mathbf{6} 6
1.61803 1.61803 1 . 6 1 8 0 3
ϕ \phi ϕ
D F P 2 \mathcal{D}_{FP}^2 D F P 2
10.8541 10.8541 1 0 . 8 5 4 1
3 5 2 + 15 2 \frac{3 \sqrt{5}}{2}+\frac{15}{2} 2 3 5 + 2 1 5
Here ϕ = 1 + 5 2 \phi = \frac{1+\sqrt{5}}{2} ϕ = 2 1 + 5 is the golden ratio.
Characters
The symbolic character table is the following
1 2 3 6 5 4 1 1 1 ϕ ϕ ϕ 1 1 1 − ϕ − 1 − ϕ − 1 − ϕ − 1 1 e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) − e − 1 3 ( 2 i π ) ϕ − 1 − e 1 3 ( 2 i π ) ϕ − 1 − ϕ − 1 1 e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) − e 1 3 ( 2 i π ) ϕ − 1 − e − 1 3 ( 2 i π ) ϕ − 1 − ϕ − 1 1 e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ ϕ 1 e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ ϕ \begin{array}{|cccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} \\
\hline
1 & 1 & 1 & \phi & \phi & \phi \\
1 & 1 & 1 & -\phi^{-1} & -\phi^{-1} & -\phi^{-1} \\
1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & - e^{-\frac{1}{3} (2 i \pi )} \phi^{-1} & - e^{\frac{1}{3} (2 i \pi )} \phi^{-1} & -\phi^{-1} \\
1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & - e^{\frac{1}{3} (2 i \pi )} \phi^{-1} & -e^{-\frac{1}{3} (2 i \pi )} \phi^{-1} & -\phi^{-1} \\
1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & \phi \\
1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi & \phi \\
\hline
\end{array} 1 1 1 1 1 1 1 2 1 1 e − 3 1 ( 2 i π ) e 3 1 ( 2 i π ) e 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) 3 1 1 e 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) e 3 1 ( 2 i π ) 6 ϕ − ϕ − 1 − e − 3 1 ( 2 i π ) ϕ − 1 − e 3 1 ( 2 i π ) ϕ − 1 e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ 5 ϕ − ϕ − 1 − e 3 1 ( 2 i π ) ϕ − 1 − e − 3 1 ( 2 i π ) ϕ − 1 e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ 4 ϕ − ϕ − 1 − ϕ − 1 − ϕ − 1 ϕ ϕ
The numeric character table is the following
1 2 3 6 5 4 1.000 1.000 1.000 1.618 1.618 1.618 1.000 1.000 1.000 − 0.6180 − 0.6180 − 0.6180 1.000 − 0.5000 − 0.8660 i − 0.5000 + 0.8660 i 0.3090 + 0.5352 i 0.3090 − 0.5352 i − 0.6180 1.000 − 0.5000 + 0.8660 i − 0.5000 − 0.8660 i 0.3090 − 0.5352 i 0.3090 + 0.5352 i − 0.6180 1.000 − 0.5000 + 0.8660 i − 0.5000 − 0.8660 i − 0.809 + 1.401 i − 0.809 − 1.401 i 1.618 1.000 − 0.5000 − 0.8660 i − 0.5000 + 0.8660 i − 0.809 − 1.401 i − 0.809 + 1.401 i 1.618 \begin{array}{|rrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} \\
\hline
1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 \\
1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 \\
1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0.3090+0.5352 i & 0.3090-0.5352 i & -0.6180 \\
1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0.3090-0.5352 i & 0.3090+0.5352 i & -0.6180 \\
1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.809+1.401 i & -0.809-1.401 i & 1.618 \\
1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.809-1.401 i & -0.809+1.401 i & 1.618 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i 3 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i 6 1 . 6 1 8 − 0 . 6 1 8 0 0 . 3 0 9 0 + 0 . 5 3 5 2 i 0 . 3 0 9 0 − 0 . 5 3 5 2 i − 0 . 8 0 9 + 1 . 4 0 1 i − 0 . 8 0 9 − 1 . 4 0 1 i 5 1 . 6 1 8 − 0 . 6 1 8 0 0 . 3 0 9 0 − 0 . 5 3 5 2 i 0 . 3 0 9 0 + 0 . 5 3 5 2 i − 0 . 8 0 9 − 1 . 4 0 1 i − 0 . 8 0 9 + 1 . 4 0 1 i 4 1 . 6 1 8 − 0 . 6 1 8 0 − 0 . 6 1 8 0 − 0 . 6 1 8 0 1 . 6 1 8 1 . 6 1 8
Representations of S L 2 ( Z ) SL_2(\mathbb{Z}) S L 2 ( Z )
The matching S S S -matrices and twist factors are the following
S S S -matrix
Twist factors
1 3 5 2 + 15 2 ( 1 1 1 ϕ ϕ ϕ 1 e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ 1 e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ ϕ ϕ ϕ − 1 − 1 − 1 ϕ e − 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ − 1 e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ − 1 e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) ) \frac{1}{\sqrt{\frac{3 \sqrt{5}}{2}+\frac{15}{2}}}\left(\begin{array}{cccccc} 1 & 1 & 1 & \phi & \phi & \phi \\ 1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi \\ 1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi \\ \phi & \phi & \phi & -1 & -1 & -1 \\ \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi & -1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} \\ \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & -1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} \end{array}\right) 2 3 5 + 2 1 5 1 ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 1 1 1 ϕ ϕ ϕ 1 e − 3 1 ( 2 i π ) e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ 1 e 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ ϕ ϕ ϕ − 1 − 1 − 1 ϕ e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ − 1 e 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ − 1 e − 3 1 ( 2 i π ) e 3 1 ( 2 i π ) ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
( 0 , − 1 3 , − 1 3 , 2 5 , 1 15 , 1 15 ) ( 0 , − 1 3 , − 1 3 , − 2 5 , 4 15 , 4 15 ) \begin{array}{l}\left(0,-\frac{1}{3},-\frac{1}{3},\frac{2}{5},\frac{1}{15},\frac{1}{15}\right) \\\left(0,-\frac{1}{3},-\frac{1}{3},-\frac{2}{5},\frac{4}{15},\frac{4}{15}\right)\end{array} ( 0 , − 3 1 , − 3 1 , 5 2 , 1 5 1 , 1 5 1 ) ( 0 , − 3 1 , − 3 1 , − 5 2 , 1 5 4 , 1 5 4 )
1 3 5 2 + 15 2 ( 1 1 1 ϕ ϕ ϕ 1 e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ 1 e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ ϕ ϕ ϕ − 1 − 1 − 1 ϕ e 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ − 1 e − 1 3 ( 2 i π ) e 1 3 ( 2 i π ) ϕ e − 1 3 ( 2 i π ) ϕ e 1 3 ( 2 i π ) ϕ − 1 e 1 3 ( 2 i π ) e − 1 3 ( 2 i π ) ) \frac{1}{\sqrt{\frac{3 \sqrt{5}}{2}+\frac{15}{2}}}\left(\begin{array}{cccccc} 1 & 1 & 1 & \phi & \phi & \phi \\ 1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} & \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi \\ 1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} & \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi \\ \phi & \phi & \phi & -1 & -1 & -1 \\ \phi & e^{\frac{1}{3} (2 i \pi )} \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & -1 & e^{-\frac{1}{3} (2 i \pi )} & e^{\frac{1}{3} (2 i \pi )} \\ \phi & e^{-\frac{1}{3} (2 i \pi )} \phi & e^{\frac{1}{3} (2 i \pi )} \phi & -1 & e^{\frac{1}{3} (2 i \pi )} & e^{-\frac{1}{3} (2 i \pi )} \end{array}\right) 2 3 5 + 2 1 5 1 ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 1 1 1 ϕ ϕ ϕ 1 e 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ 1 e − 3 1 ( 2 i π ) e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ ϕ ϕ ϕ − 1 − 1 − 1 ϕ e − 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ − 1 e − 3 1 ( 2 i π ) e 3 1 ( 2 i π ) ϕ e 3 1 ( 2 i π ) ϕ e − 3 1 ( 2 i π ) ϕ − 1 e 3 1 ( 2 i π ) e − 3 1 ( 2 i π ) ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
( 0 , 1 3 , 1 3 , 2 5 , − 4 15 , − 4 15 ) ( 0 , 1 3 , 1 3 , − 2 5 , − 1 15 , − 1 15 ) \begin{array}{l}\left(0,\frac{1}{3},\frac{1}{3},\frac{2}{5},-\frac{4}{15},-\frac{4}{15}\right) \\\left(0,\frac{1}{3},\frac{1}{3},-\frac{2}{5},-\frac{1}{15},-\frac{1}{15}\right)\end{array} ( 0 , 3 1 , 3 1 , 5 2 , − 1 5 4 , − 1 5 4 ) ( 0 , 3 1 , 3 1 , − 5 2 , − 1 5 1 , − 1 5 1 )
Adjoint Subring
Elements 1 , 4 \mathbf{1}, \mathbf{4} 1 , 4 , form the adjoint subring Fib : FR 2 2 , 0 \text{Fib}:\ \text{FR}^{2,0}_{2} Fib : FR 2 2 , 0 .
The upper central series is the following:
Fib × Z 3 ⊃ 1 , 4 Fib \text{Fib}\times \mathbb{Z}_3 \underset{ \mathbf{1}, \mathbf{4} }{\supset} \text{Fib} Fib × Z 3 1 , 4 ⊃ Fib
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 2 ′ , deg ( 3 ) = 3 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 3 ′ , deg ( 6 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{3}', \text{deg}(\mathbf{6}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 2 ′ , deg ( 3 ) = 3 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 3 ′ , deg ( 6 ) = 2 ′ , where the degrees form the group Z 3 \mathbb{Z}_3 Z 3 with multiplication table:
1 ′ 2 ′ 3 ′ 2 ′ 3 ′ 1 ′ 3 ′ 1 ′ 2 ′ \begin{array}{|lll|}
\hline
\mathbf{1}' & \mathbf{2}' & \mathbf{3}' \\
\mathbf{2}' & \mathbf{3}' & \mathbf{1}' \\
\mathbf{3}' & \mathbf{1}' & \mathbf{2}' \\
\hline
\end{array} 1 ′ 2 ′ 3 ′ 2 ′ 3 ′ 1 ′ 3 ′ 1 ′ 2 ′
Categorifications
Data
Download links for numeric data: