\(\text{PSU(2})_7:\ \text{FR}^{4,0}_{6}\)
Fusion Rules
\[\begin{array}{|llll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{2} & \mathbf{1}+\mathbf{3} & \mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{4} \\ \mathbf{3} & \mathbf{2}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} \\ \mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} \\ \hline \end{array}\]Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.87939\) | $ \sin( 7 \pi/9)/\sin(\pi/9) $ |
\(\mathbf{3}\) | \(2.53209\) | $ \sin( 3 \pi/9)/\sin(\pi/9) $ |
\(\mathbf{4}\) | \(2.87939\) | $ \sin( 5 \pi/9)/\sin(\pi/9) $ |
\(\mathcal{D}_{FP}^2\) | \(19.2344\) | $ \frac{9}{4\sin(\pi/9)^2} $ |
Characters
The symbolic character table is the following
\[\begin{array}{|cccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \hline 1 & a_3 & b_3 & c_3 \\ 1 & 1 & 0 & -1 \\ 1 & a_2 & b_1 & c_2 \\ 1 & a_1 & b_2 & c_1 \\ \hline \end{array}\]where \(a_i := \text{Root}[ -1 -3x + x^3, i ]\), \(b_i := \text{Root}[ 3 -3x^2 + x^3, i ]\), and \(c_i := \text{Root}[ 1 -3x^2 + x^3, i ]\). In particular \(a_3 = \sin( 7 \pi/9)/\sin(\pi/9)\), \(b_3 = \sin( 3 \pi/9)/\sin(\pi/9)\), and \(c_3 = \sin( 5 \pi/9)/\sin(\pi/9)\).
The numeric character table is the following
\[\begin{array}{|rrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \hline 1.000 & 1.879 & 2.532 & 2.879 \\ 1.000 & 1.000 & 0 & -1.000 \\ 1.000 & -0.3473 & -0.8794 & 0.6527 \\ 1.000 & -1.532 & 1.347 & -0.5321 \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{2\sin\left(\frac{\pi}{9}\right)}{3}\left(\begin{array}{cccc} 1 & D_2 & D_3 & D_4\\ D_2 & -D_4 & D_3 & -1 \\ D_3 & D_3 & 0 & -D_3 \\ D_4 & -1 & -D_3 & D_2 \end{array}\right)\) | \(\begin{array}{l}\left(0,\frac{1}{3},\frac{2}{9},-\frac{1}{3}\right) \\\left(0,-\frac{1}{3},-\frac{2}{9},\frac{1}{3}\right)\end{array}\) |
where $D_i$ stands for the $i$’th quantum dimension.
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
Data
Download links for numeric data: