\(\text{FR}^{6,0}_{9}\)

Fusion Rules

\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{4} & \mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{5} & \mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} \\ \mathbf{6} & \mathbf{5} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{3} \ \mathbf{4}), (\mathbf{5} \ \mathbf{6})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(2.\) \(2\)
\(\mathbf{4}\) \(2.\) \(2\)
\(\mathbf{5}\) \(2.23607\) \(\sqrt{5}\)
\(\mathbf{6}\) \(2.23607\) \(\sqrt{5}\)
\(\mathcal{D}_{FP}^2\) \(20.\) \(20\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 1 & 1 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & 0 & 0 \\ 1 & 1 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & -1 & 1 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.236 & 2.236 \\ 1.000 & 1.000 & 2.000 & 2.000 & -2.236 & -2.236 \\ 1.000 & 1.000 & -1.618 & 0.6180 & 0 & 0 \\ 1.000 & 1.000 & 0.6180 & -1.618 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & 0 & -1.000 & 1.000 \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{2}{5},-\frac{2}{5},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,\frac{2}{5},-\frac{2}{5},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,-\frac{2}{5},\frac{2}{5},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,-\frac{2}{5},\frac{2}{5},-\frac{1}{4},\frac{1}{4}\right)\end{array}\)
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,-\frac{2}{5},\frac{2}{5},0,\frac{1}{2}\right) \\\left(0,0,-\frac{2}{5},\frac{2}{5},\frac{1}{2},0\right) \\\left(0,0,\frac{2}{5},-\frac{2}{5},0,\frac{1}{2}\right) \\\left(0,0,\frac{2}{5},-\frac{2}{5},\frac{1}{2},0\right)\end{array}\)
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{1}{5},-\frac{1}{5},\frac{1}{2},0\right) \\\left(0,0,\frac{1}{5},-\frac{1}{5},0,\frac{1}{2}\right) \\\left(0,0,-\frac{1}{5},\frac{1}{5},\frac{1}{2},0\right) \\\left(0,0,-\frac{1}{5},\frac{1}{5},0,\frac{1}{2}\right)\end{array}\)
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,-\frac{1}{5},\frac{1}{5},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,-\frac{1}{5},\frac{1}{5},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,\frac{1}{5},-\frac{1}{5},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,\frac{1}{5},-\frac{1}{5},\frac{1}{4},-\frac{1}{4}\right)\end{array}\)

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\), form the adjoint subring \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\) .

The upper central series is the following: \(\text{FR}^{6,0}_{9} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \left.\text{Rep(}D_5\right)\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: