\(\text{FR}^{6,0}_{9}\)
Fusion Rules
\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{4} & \mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{5} & \mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{3}+\mathbf{4} \\ \mathbf{6} & \mathbf{5} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{4}), (\mathbf{5} \ \mathbf{6})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) | \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.\) | \(2\) |
\(\mathbf{4}\) | \(2.\) | \(2\) |
\(\mathbf{5}\) | \(2.23607\) | \(\sqrt{5}\) |
\(\mathbf{6}\) | \(2.23607\) | \(\sqrt{5}\) |
\(\mathcal{D}_{FP}^2\) | \(20.\) | \(20\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 1 & 1 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & 0 & 0 \\ 1 & 1 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & -1 & 1 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.236 & 2.236 \\ 1.000 & 1.000 & 2.000 & 2.000 & -2.236 & -2.236 \\ 1.000 & 1.000 & -1.618 & 0.6180 & 0 & 0 \\ 1.000 & 1.000 & 0.6180 & -1.618 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & 0 & -1.000 & 1.000 \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,\frac{2}{5},-\frac{2}{5},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,\frac{2}{5},-\frac{2}{5},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,-\frac{2}{5},\frac{2}{5},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,-\frac{2}{5},\frac{2}{5},-\frac{1}{4},\frac{1}{4}\right)\end{array}\) |
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,-\frac{2}{5},\frac{2}{5},0,\frac{1}{2}\right) \\\left(0,0,-\frac{2}{5},\frac{2}{5},\frac{1}{2},0\right) \\\left(0,0,\frac{2}{5},-\frac{2}{5},0,\frac{1}{2}\right) \\\left(0,0,\frac{2}{5},-\frac{2}{5},\frac{1}{2},0\right)\end{array}\) |
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,\frac{1}{5},-\frac{1}{5},\frac{1}{2},0\right) \\\left(0,0,\frac{1}{5},-\frac{1}{5},0,\frac{1}{2}\right) \\\left(0,0,-\frac{1}{5},\frac{1}{5},\frac{1}{2},0\right) \\\left(0,0,-\frac{1}{5},\frac{1}{5},0,\frac{1}{2}\right)\end{array}\) |
\(\frac{1}{2 \sqrt{5}}\left(\begin{array}{cccccc} 1 & 1 & 2 & 2 & \sqrt{5} & \sqrt{5} \\ 1 & 1 & 2 & 2 & -\sqrt{5} & -\sqrt{5} \\ 2 & 2 & \frac{-5-\sqrt{5}}{\sqrt{5}} & \frac{5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ 2 & 2 & \frac{5-\sqrt{5}}{\sqrt{5}} & \frac{-5-\sqrt{5}}{\sqrt{5}} & 0 & 0 \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & -\sqrt{5} & \sqrt{5} \\ \sqrt{5} & -\sqrt{5} & 0 & 0 & \sqrt{5} & -\sqrt{5} \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,-\frac{1}{5},\frac{1}{5},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,-\frac{1}{5},\frac{1}{5},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,\frac{1}{5},-\frac{1}{5},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,\frac{1}{5},-\frac{1}{5},\frac{1}{4},-\frac{1}{4}\right)\end{array}\) |
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\), form the adjoint subring \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\) .
The upper central series is the following: \(\text{FR}^{6,0}_{9} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \left.\text{Rep(}D_5\right)\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: