\(\text{Fib} \times \text{PSU}(2)_5 :\ \text{FR}^{6,0}_{14}\)
Fusion Rules
\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1}+\mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{4}+\mathbf{6} \\ \mathbf{3} & \mathbf{5} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{5}+\mathbf{6} \\ \mathbf{5} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{6} & \mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]The following elements form non-trivial sub fusion rings
Elements | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\text{Fib}:\ \text{FR}^{2,0}_{2}\) |
\(\{\mathbf{1},\mathbf{3},\mathbf{4}\}\) | \(\text{PSU}(2)_5:\ \text{FR}^{3,0}_{3}\) |
Frobenius-Perron Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.61803\) | \(\phi\) |
\(\mathbf{3}\) | \(1.80194\) | \(\frac{\sin(5\pi/7)}{\sin(\pi/7)}\) |
\(\mathbf{4}\) | \(2.24698\) | \(\frac{\sin(3\pi/7)}{\sin(\pi/7)}\) |
\(\mathbf{5}\) | \(2.9156\) | \(\phi \frac{\sin(5\pi/7)}{\sin(\pi/7)}\) |
\(\mathbf{6}\) | \(3.63569\) | \(\phi\frac{\sin(3\pi/7)}{\sin(\pi/7)}\) |
\(\mathcal{D}_{FP}^2\) | \(33.6329\) | \(\phi^2 \frac{7}{4 \left(\sin\frac{\pi }{7}\right)^2}\) |
Here $\phi = \frac{1 + \sqrt{5}}{2}$ is the golden ratio.
Characters
The symbolic character table is the following
\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1 & \phi & a_3 & b_3 & a_3 \phi & b_3 \phi \\ 1 & -\phi^{-1} & a_3 & b_3 & - a_3 \phi^{-1} & -b_3 \phi^{-1} \\ 1 & \phi & a_2 & b_1 & a_2 \phi & b_1 \phi \\ 1 & \phi & a_1 & b_2 & a_1 \phi & b_2 \phi \\ 1 & -\phi^{-1} & a_2 & b_1 & - a_2 \phi^{-1} & -b_1 \phi^{-1} \\ 1 & -\phi^{-1} & a_1 & b_2 & -a_1 \phi^{-1} & -b_2 \phi^{-1} \\ \hline \end{array}\]Where $a_i$ is the $i$’th root of the polynomial $x^3-x^2-2 x+1$ and $b_i$ is the $i$’th root of the polynomial $x^3-2 x^2-x+1$.
The numeric character table is the following
\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1.000 & 1.618 & 1.802 & 2.247 & 2.916 & 3.636 \\ 1.000 & -0.6180 & 1.802 & 2.247 & -1.114 & -1.389 \\ 1.000 & 1.618 & 0.4450 & -0.8019 & 0.7201 & -1.298 \\ 1.000 & 1.618 & -1.247 & 0.5550 & -2.018 & 0.8979 \\ 1.000 & -0.6180 & 0.4450 & -0.8019 & -0.2751 & 0.4956 \\ 1.000 & -0.6180 & -1.247 & 0.5550 & 0.7707 & -0.3430 \\ \hline \end{array}\]Representations of $SL_2(\mathbb{Z})$
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{ 2 \sin \left(\frac{\pi }{7}\right) }{\phi\sqrt{7}} \left(\begin{array}{cccccc} 1 & D_2 & D_3 & D_4 & D_5 & D_6 \\ D_2 & -1 & D_5 & D_6 & - D_3 & -D_4 \\ D_3 & D_5 & -D_4 & 1 & -D_6 & D_2\\ D_4 & D_6 & 1 & - D_3 & D_2 & -D_5 \\ D_5 & -D_3 & -D_6 & D_2 & D_4 & -1 \\ D_6 & -D_4 & D_2 & -D_5 & -1 & -D_3 \end{array}\right)\) | \(\begin{array}{l}\left(0,\frac{2}{5},-\frac{1}{7},\frac{2}{7},\frac{9}{35},-\frac{11}{35}\right) \\\left(0,-\frac{2}{5},-\frac{1}{7},\frac{2}{7},\frac{16}{35},-\frac{4}{35}\right) \\\left(0,\frac{2}{5},\frac{1}{7},-\frac{2}{7},-\frac{16}{35},\frac{4}{35}\right) \\\left(0,-\frac{2}{5},\frac{1}{7},-\frac{2}{7},-\frac{9}{35},\frac{11}{35}\right)\end{array}\) |
Where $D_i$ is $i’$th Frobenius-Perron dimension.
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
Data
Download links for numeric data: