\(\text{Fib} \times \text{ExtRep}\left(D_3\right):\ \text{FR}^{6,0}_{14}\)

Fusion Rules

\[\begin{array}{|llllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \mathbf{2} & \mathbf{1}+\mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{4}+\mathbf{6} \\ \mathbf{3} & \mathbf{5} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{6} & \mathbf{5}+\mathbf{6} \\ \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{5}+\mathbf{6} \\ \mathbf{5} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{6} & \mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\text{Fib}:\ \text{FR}^{2,0}_{2}\)
\(\{\mathbf{1},\mathbf{3},\mathbf{4}\}\) \(\text{PSU}(2)_5:\ \text{FR}^{3,0}_{3}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.61803\) \(\phi\)
\(\mathbf{3}\) \(1.80194\) \(\frac{\sin(5\pi/7)}{\sin(\pi/7)}\)
\(\mathbf{4}\) \(2.24698\) \(\frac{\sin(3\pi/7)}{\sin(\pi/7)}\)
\(\mathbf{5}\) \(2.9156\) \(\phi \frac{\sin(5\pi/7)}{\sin(\pi/7)}\)
\(\mathbf{6}\) \(3.63569\) \(\phi\frac{\sin(3\pi/7)}{\sin(\pi/7)}\)
\(\mathcal{D}_{FP}^2\) \(33.6329\) \(\phi^2 \frac{7}{4 \left(\sin\frac{\pi }{7}\right)^2}\)

Here $\phi = \frac{1 + \sqrt{5}}{2}$ is the golden ratio.

Characters

The symbolic character table is the following

\[\begin{array}{|cccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1 & \phi & a_3 & b_3 & a_3 \phi & b_3 \phi \\ 1 & -\phi^{-1} & a_3 & b_3 & - a_3 \phi^{-1} & -b_3 \phi^{-1} \\ 1 & \phi & a_2 & b_1 & a_2 \phi & b_1 \phi \\ 1 & \phi & a_1 & b_2 & a_1 \phi & b_2 \phi \\ 1 & -\phi^{-1} & a_2 & b_1 & - a_2 \phi^{-1} & -b_1 \phi^{-1} \\ 1 & -\phi^{-1} & a_1 & b_2 & -a_1 \phi^{-1} & -b_2 \phi^{-1} \\ \hline \end{array}\]

Where $a_i$ is the $i$’th root of the polynomial $x^3-x^2-2 x+1$ and $b_i$ is the $i$’th root of the polynomial $x^3-2 x^2-x+1$.

The numeric character table is the following

\[\begin{array}{|rrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline 1.000 & 1.618 & 1.802 & 2.247 & 2.916 & 3.636 \\ 1.000 & -0.6180 & 1.802 & 2.247 & -1.114 & -1.389 \\ 1.000 & 1.618 & 0.4450 & -0.8019 & 0.7201 & -1.298 \\ 1.000 & 1.618 & -1.247 & 0.5550 & -2.018 & 0.8979 \\ 1.000 & -0.6180 & 0.4450 & -0.8019 & -0.2751 & 0.4956 \\ 1.000 & -0.6180 & -1.247 & 0.5550 & 0.7707 & -0.3430 \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{ 2 \sin \left(\frac{\pi }{7}\right) }{\phi\sqrt{7}} \left(\begin{array}{cccccc} 1 & D_2 & D_3 & D_4 & D_5 & D_6 \\ D_2 & -1 & D_5 & D_6 & - D_3 & -D_4 \\ D_3 & D_5 & -D_4 & 1 & -D_6 & D_2\\ D_4 & D_6 & 1 & - D_3 & D_2 & -D_5 \\ D_5 & -D_3 & -D_6 & D_2 & D_4 & -1 \\ D_6 & -D_4 & D_2 & -D_5 & -1 & -D_3 \end{array}\right)\) \(\begin{array}{l}\left(0,\frac{2}{5},-\frac{1}{7},\frac{2}{7},\frac{9}{35},-\frac{11}{35}\right) \\\left(0,-\frac{2}{5},-\frac{1}{7},\frac{2}{7},\frac{16}{35},-\frac{4}{35}\right) \\\left(0,\frac{2}{5},\frac{1}{7},-\frac{2}{7},-\frac{16}{35},\frac{4}{35}\right) \\\left(0,-\frac{2}{5},\frac{1}{7},-\frac{2}{7},-\frac{9}{35},\frac{11}{35}\right)\end{array}\)

Where $D_i$ is $i’$th quantum dimension.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

Data

Download links for numeric data: