TY(Q): FR19,6\text{TY(Q)}:\ \text{FR}^{9,6}_{1}

Fusion Rules

123456789214365879342178659431287569568721349657812439785643219876534129999999991+2+3+4+5+6+7+8\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\ \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} & \mathbf{9} \\ \mathbf{4} & \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{9} \\ \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{9} \\ \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{9} \\ \mathbf{7} & \mathbf{8} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{9} \\ \mathbf{8} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{9} \\ \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(3 5 4 6),(3 6 4 5),(3 7 4 8),(3 8 4 7),(5 7 6 8),(5 8 6 7)}\{(\mathbf{3} \ \mathbf{5} \ \mathbf{4} \ \mathbf{6}), (\mathbf{3} \ \mathbf{6} \ \mathbf{4} \ \mathbf{5}), (\mathbf{3} \ \mathbf{7} \ \mathbf{4} \ \mathbf{8}), (\mathbf{3} \ \mathbf{8} \ \mathbf{4} \ \mathbf{7}), (\mathbf{5} \ \mathbf{7} \ \mathbf{6} \ \mathbf{8}), (\mathbf{5} \ \mathbf{8} \ \mathbf{6} \ \mathbf{7})\}

The following elements form non-trivial sub fusion rings

Elements SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Z4: FR14,2\mathbb{Z}_4:\ \text{FR}^{4,2}_{1}
{1,2,5,6}\{\mathbf{1},\mathbf{2},\mathbf{5},\mathbf{6}\} Z4: FR14,2\mathbb{Z}_4:\ \text{FR}^{4,2}_{1}
{1,2,7,8}\{\mathbf{1},\mathbf{2},\mathbf{7},\mathbf{8}\} Z4: FR14,2\mathbb{Z}_4:\ \text{FR}^{4,2}_{1}
{1,2,3,4,5,6,7,8}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6},\mathbf{7},\mathbf{8}\} Q: FR18,6\text{Q}:\ \text{FR}^{8,6}_{1}

Frobenius-Perron Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 1.1. 11
6\mathbf{6} 1.1. 11
7\mathbf{7} 1.1. 11
8\mathbf{8} 1.1. 11
9\mathbf{9} 2.828432.82843 222 \sqrt{2}
DFP2\mathcal{D}_{FP}^2 16.16. 1616

Characters

The symbolic character table is the following

12345678911111111221111111122111111110111111110111111110220000000\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \sqrt{2} \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -2 \sqrt{2} \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 0 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 0 \\ 2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}

The numeric character table is the following

1234567891.0001.0001.0001.0001.0001.0001.0001.0002.8281.0001.0001.0001.0001.0001.0001.0001.0002.8281.0001.0001.0001.0001.0001.0001.0001.00001.0001.0001.0001.0001.0001.0001.0001.00001.0001.0001.0001.0001.0001.0001.0001.00002.0002.0000000000\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 2.828 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -2.828 \\ 1.000 & 1.000 & -1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & 1.000 & 1.000 & 0 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & 0 \\ 2.000 & -2.000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}

Representations of SL2(Z)SL_2(\mathbb{Z})

This fusion ring does not provide any representations of SL2(Z).SL_2(\mathbb{Z}).

Adjoint Subring

Elements 1,2,3,4,5,6,7,8\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, form the adjoint subring Q: FR18,6\text{Q}:\ \text{FR}^{8,6}_{1} .

The upper central series is the following: TY(Q)1,2,3,4,5,6,7,8Q1Trivial\text{TY(Q)} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8} }{\supset} \text{Q} \underset{ \mathbf{1} }{\supset} \text{Trivial}

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=1,deg(4)=1,deg(5)=1,deg(6)=1,deg(7)=1,deg(8)=1,deg(9)=2\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{1}', \text{deg}(\mathbf{9}) = \mathbf{2}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: