Q: FR18,6
Fusion Rules
1234567821436587342187564312786556782143658712347865342187564312
The fusion rules are invariant under the group generated by the following permutations:
{(3 5 4 6),(3 6 4 5),(3 7 4 8),(3 8 4 7),(5 7 6 8),(5 8 6 7)}
The following elements form non-trivial sub fusion rings
Elements |
SubRing |
{1,2} |
Z2: FR12,0 |
{1,2,3,4} |
Z4: FR14,2 |
{1,2,5,6} |
Z4: FR14,2 |
{1,2,7,8} |
Z4: FR14,2 |
Frobenius-Perron Dimensions
Particle |
Numeric |
Symbolic |
1 |
1. |
1 |
2 |
1. |
1 |
3 |
1. |
1 |
4 |
1. |
1 |
5 |
1. |
1 |
6 |
1. |
1 |
7 |
1. |
1 |
8 |
1. |
1 |
DFP2 |
8. |
8 |
Characters
The symbolic character table is the following
11111221111−2311−1−10411−1−1051−11−1061−11−1071−1−11081−1−110
The numeric character table is the following
11.0001.0001.0001.0002.00021.0001.0001.0001.000−2.00031.0001.000−1.000−1.000041.0001.000−1.000−1.000051.000−1.0001.000−1.000061.000−1.0001.000−1.000071.000−1.000−1.0001.000081.000−1.000−1.0001.0000
Representations of SL2(Z)
This fusion ring does not provide any representations of SL2(Z).
Adjoint Subring
The adjoint subring is the trivial ring.
The upper central series is the following:
Q1⊃Trivial
Universal grading
Each particle can be graded as follows: deg(1)=1′,deg(2)=2′,deg(3)=3′,deg(4)=4′,deg(5)=5′,deg(6)=6′,deg(7)=7′,deg(8)=8′, where the degrees form the group Q with multiplication table:
1′2′3′4′5′6′7′8′2′1′4′3′6′5′8′7′3′4′2′1′8′7′5′6′4′3′1′2′7′8′6′5′5′6′7′8′2′1′4′3′6′5′8′7′1′2′3′4′7′8′6′5′3′4′2′1′8′7′5′6′4′3′1′2′
Categorifications
Data
Download links for numeric data: