\(\text{FR}^{9,4}_{3}\)

Fusion Rules

\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{3} & \mathbf{6} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{9} & \mathbf{7} & \mathbf{8} \\ \mathbf{4} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{8} & \mathbf{9} & \mathbf{7} \\ \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{6} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{9} & \mathbf{7} \\ \mathbf{6} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{9} & \mathbf{7} & \mathbf{8} \\ \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{9} & \mathbf{8} & \mathbf{1}+\mathbf{2} & \mathbf{3}+\mathbf{6} & \mathbf{4}+\mathbf{5} \\ \mathbf{8} & \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{7} & \mathbf{9} & \mathbf{4}+\mathbf{5} & \mathbf{1}+\mathbf{2} & \mathbf{3}+\mathbf{6} \\ \mathbf{9} & \mathbf{9} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{3}+\mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{1}+\mathbf{2} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{7} \ \mathbf{8} \ \mathbf{9}), (\mathbf{7} \ \mathbf{9} \ \mathbf{8}), (\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6}) (\mathbf{7} \ \mathbf{8})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{3},\mathbf{4}\}\) \(\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{7}\}\) \(\text{Ising}:\ \text{FR}^{3,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{8}\}\) \(\text{Ising}:\ \text{FR}^{3,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{9}\}\) \(\text{Ising}:\ \text{FR}^{3,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\}\) \(\mathbb{Z}_6:\ \text{FR}^{6,4}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(1.\) \(1\)
\(\mathbf{6}\) \(1.\) \(1\)
\(\mathbf{7}\) \(1.41421\) \(\sqrt{2}\)
\(\mathbf{8}\) \(1.41421\) \(\sqrt{2}\)
\(\mathbf{9}\) \(1.41421\) \(\sqrt{2}\)
\(\mathcal{D}_{FP}^2\) \(12.\) \(12\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & 1 & 1 & 1 & 1 & 1 & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} \\ 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & -1 & 0 & 0 & 0 \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & -1 & 0 & 0 & 0 \\ 2 & -1 & -1 & -1 & -1 & 2 & 0 & 0 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.414 & 1.414 & 1.414 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -1.414 & -1.414 & -1.414 \\ 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & 0 & 0 & 0 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0.5000+0.8660 i & 0.5000-0.8660 i & -1.000 & 0 & 0 & 0 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0.5000-0.8660 i & 0.5000+0.8660 i & -1.000 & 0 & 0 & 0 \\ 2.000 & -1.000 & -1.000 & -1.000 & -1.000 & 2.000 & 0 & 0 & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}\), form the adjoint subring \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) .

The upper central series is the following: \(\text{FR}^{9,4}_{3} \underset{ \mathbf{1}, \mathbf{2} }{\supset} \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{2}', \text{deg}(\mathbf{4}) = \mathbf{3}', \text{deg}(\mathbf{5}) = \mathbf{3}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{4}', \text{deg}(\mathbf{8}) = \mathbf{5}', \text{deg}(\mathbf{9}) = \mathbf{6}'\), where the degrees form the group \(D_3\) with multiplication table:

\[\begin{array}{|llllll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' & \mathbf{5}' & \mathbf{6}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{5}' & \mathbf{6}' & \mathbf{3}' & \mathbf{4}' \\ \mathbf{3}' & \mathbf{6}' & \mathbf{4}' & \mathbf{1}' & \mathbf{2}' & \mathbf{5}' \\ \mathbf{4}' & \mathbf{5}' & \mathbf{1}' & \mathbf{3}' & \mathbf{6}' & \mathbf{2}' \\ \mathbf{5}' & \mathbf{4}' & \mathbf{6}' & \mathbf{2}' & \mathbf{1}' & \mathbf{3}' \\ \mathbf{6}' & \mathbf{3}' & \mathbf{2}' & \mathbf{5}' & \mathbf{4}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: