FR109,4\text{FR}^{9,4}_{10}

Fusion Rules

12345678921435678934215769843125769855551+2+3+48+98+96+76+766778+91+2+73+4+65+85+977668+93+4+61+2+75+95+888996+75+85+93+4+71+2+699886+75+95+81+2+63+4+7\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{9} & \mathbf{8} \\ \mathbf{4} & \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{9} & \mathbf{8} \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\ \mathbf{6} & \mathbf{6} & \mathbf{7} & \mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{7} & \mathbf{3}+\mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{8} & \mathbf{5}+\mathbf{9} \\ \mathbf{7} & \mathbf{7} & \mathbf{6} & \mathbf{6} & \mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{7} & \mathbf{5}+\mathbf{9} & \mathbf{5}+\mathbf{8} \\ \mathbf{8} & \mathbf{8} & \mathbf{9} & \mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8} & \mathbf{5}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{7} & \mathbf{1}+\mathbf{2}+\mathbf{6} \\ \mathbf{9} & \mathbf{9} & \mathbf{8} & \mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{9} & \mathbf{5}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{7} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(3 4),(8 9)}\{(\mathbf{3} \ \mathbf{4}), (\mathbf{8} \ \mathbf{9})\}

The following particles form non-trivial sub fusion rings

Particles SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,2,7}\{\mathbf{1},\mathbf{2},\mathbf{7}\} Rep(D3): FR23,0\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Z4: FR14,2\mathbb{Z}_4:\ \text{FR}^{4,2}_{1}
{1,2,3,4,5}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\} TY(Z4): FR15,2\left.\text{TY(}\mathbb{Z}_4\right):\ \text{FR}^{5,2}_{1}
{1,2,3,4,6,7}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6},\mathbf{7}\} Rep(Dic12): FR46,2\left.\text{Rep(}\text{Dic}_{12}\right):\ \text{FR}^{6,2}_{4}

Quantum Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 2.2. 22
6\mathbf{6} 2.2. 22
7\mathbf{7} 2.2. 22
8\mathbf{8} 2.2. 22
9\mathbf{9} 2.2. 22
DFP2\mathcal{D}_{FP}^2 24.24. 2424

Characters

The symbolic character table is the following

1342759861111222221111121111111121111111222221111200021ii1000001ii100000111110i3i31111110i3i31\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{7} & \mathbf{5} & \mathbf{9} & \mathbf{8} & \mathbf{6} \\ \hline 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & -1 & -2 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & 2 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 2 & -2 & -2 & -2 & 2 \\ 1 & -1 & -1 & 1 & 2 & 0 & 0 & 0 & -2 \\ 1 & -i & i & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & i & -i & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 & -1 & 0 & i \sqrt{3} & -i \sqrt{3} & 1 \\ 1 & -1 & -1 & 1 & -1 & 0 & -i \sqrt{3} & i \sqrt{3} & 1 \\ \hline \end{array}

The numeric character table is the following

1342759861.0001.0001.0001.0002.0002.0002.0002.0002.0001.0001.0001.0001.0001.0002.0001.0001.0001.0001.0001.0001.0001.0001.0002.0001.0001.0001.0001.0001.0001.0001.0002.0002.0002.0002.0002.0001.0001.0001.0001.0002.0000002.0001.0001.000i1.000i1.000000001.0001.000i1.000i1.000000001.0001.0001.0001.0001.00001.732i1.732i1.0001.0001.0001.0001.0001.00001.732i1.732i1.000\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{7} & \mathbf{5} & \mathbf{9} & \mathbf{8} & \mathbf{6} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -2.000 & 1.000 & 1.000 & -1.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & 2.000 & -1.000 & -1.000 & -1.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & -2.000 & -2.000 & -2.000 & 2.000 \\ 1.000 & -1.000 & -1.000 & 1.000 & 2.000 & 0 & 0 & 0 & -2.000 \\ 1.000 & -1.000 i & 1.000 i & -1.000 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & 1.000 i & -1.000 i & -1.000 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & 0 & 1.732 i & -1.732 i & 1.000 \\ 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & 0 & -1.732 i & 1.732 i & 1.000 \\ \hline \end{array}

Modular Data

This fusion ring does not have any matching SS-and TT-matrices.

Adjoint Subring

Particles 1,2,3,4,6,7\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7}, form the adjoint subring Rep(Dic12): FR46,2\left.\text{Rep(}\text{Dic}_{12}\right):\ \text{FR}^{6,2}_{4} .

The upper central series is the following: FR109,41,2,3,4,6,7Rep(Dic12)1,2,4Rep(D3)\text{FR}^{9,4}_{10} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7} }{\supset} \left.\text{Rep(}\text{Dic}_{12}\right) \underset{ \mathbf{1}, \mathbf{2}, \mathbf{4} }{\supset} \left.\text{Rep(}D_3\right)

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=1,deg(4)=1,deg(5)=2,deg(6)=1,deg(7)=1,deg(8)=2,deg(9)=2\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{2}', \text{deg}(\mathbf{9}) = \mathbf{2}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: