\(\text{Rep(}D_3\text{)$\times $}\text{PSU}(2)_5:\ \text{FR}^{9,0}_{20}\)

Fusion Rules

\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{9} \\ \mathbf{3} & \mathbf{4} & \mathbf{1}+\mathbf{6} & \mathbf{2}+\mathbf{7} & \mathbf{8} & \mathbf{3}+\mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{5}+\mathbf{9} & \mathbf{8}+\mathbf{9} \\ \mathbf{4} & \mathbf{3} & \mathbf{2}+\mathbf{7} & \mathbf{1}+\mathbf{6} & \mathbf{8} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{6} & \mathbf{5}+\mathbf{9} & \mathbf{8}+\mathbf{9} \\ \mathbf{5} & \mathbf{5} & \mathbf{8} & \mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{5} & \mathbf{9} & \mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{8} & \mathbf{6}+\mathbf{7}+\mathbf{9} \\ \mathbf{6} & \mathbf{7} & \mathbf{3}+\mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{6} & \mathbf{2}+\mathbf{4}+\mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{6} & \mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{6} & \mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{8} & \mathbf{5}+\mathbf{9} & \mathbf{5}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{8} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{9} & \mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \hline \end{array}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{5}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)
\(\{\mathbf{1},\mathbf{3},\mathbf{6}\}\) \(\text{PSU}(2)_5:\ \text{FR}^{3,0}_{3}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6},\mathbf{7}\}\) \(\text{SU(2})_5:\ \text{FR}^{6,0}_{6}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.80194\) \(\text{Root}\left[x^3-x^2-2 x+1,3\right]\)
\(\mathbf{4}\) \(1.80194\) \(\text{Root}\left[x^3-x^2-2 x+1,3\right]\)
\(\mathbf{5}\) \(2.\) \(2\)
\(\mathbf{6}\) \(2.24698\) \(\text{Root}\left[x^3-2 x^2-x+1,3\right]\)
\(\mathbf{7}\) \(2.24698\) \(\text{Root}\left[x^3-2 x^2-x+1,3\right]\)
\(\mathbf{8}\) \(3.60388\) \(\text{Root}\left[x^3-2 x^2-8 x+8,3\right]\)
\(\mathbf{9}\) \(4.49396\) \(\text{Root}\left[x^3-4 x^2-4 x+8,3\right]\)
\(\mathcal{D}_{FP}^2\) \(55.7754\) \(2 \text{Root}\left[x^3-x^2-2 x+1,3\right]^2+2 \text{Root}\left[x^3-2 x^2-x+1,3\right]^2+\text{Root}\left[x^3-2 x^2-8 x+8,3\right]^2+\text{Root}\left[x^3-4 x^2-4 x+8,3\right]^2+6\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & \text{Root}\left[x^3-x^2-2 x+1,3\right] & \text{Root}\left[x^3-x^2-2 x+1,3\right] & 2 & \text{Root}\left[x^3-2 x^2-x+1,3\right] & \text{Root}\left[x^3-2 x^2-x+1,3\right] & \text{Root}\left[x^3-2 x^2-8 x+8,3\right] & \text{Root}\left[x^3-4 x^2-4 x+8,3\right] \\ 1 & 1 & \text{Root}\left[x^3-x^2-2 x+1,3\right] & \text{Root}\left[x^3-x^2-2 x+1,3\right] & -1 & \text{Root}\left[x^3-2 x^2-x+1,3\right] & \text{Root}\left[x^3-2 x^2-x+1,3\right] & \text{Root}\left[x^3+x^2-2 x-1,1\right] & \text{Root}\left[x^3+2 x^2-x-1,1\right] \\ 1 & 1 & \text{Root}\left[x^3-x^2-2 x+1,2\right] & \text{Root}\left[x^3-x^2-2 x+1,2\right] & 2 & \text{Root}\left[x^3-2 x^2-x+1,1\right] & \text{Root}\left[x^3-2 x^2-x+1,1\right] & \text{Root}\left[x^3-2 x^2-8 x+8,2\right] & \text{Root}\left[x^3-4 x^2-4 x+8,1\right] \\ 1 & 1 & \text{Root}\left[x^3-x^2-2 x+1,1\right] & \text{Root}\left[x^3-x^2-2 x+1,1\right] & 2 & \text{Root}\left[x^3-2 x^2-x+1,2\right] & \text{Root}\left[x^3-2 x^2-x+1,2\right] & \text{Root}\left[x^3-2 x^2-8 x+8,1\right] & \text{Root}\left[x^3-4 x^2-4 x+8,2\right] \\ 1 & 1 & \text{Root}\left[x^3-x^2-2 x+1,2\right] & \text{Root}\left[x^3-x^2-2 x+1,2\right] & -1 & \text{Root}\left[x^3-2 x^2-x+1,1\right] & \text{Root}\left[x^3-2 x^2-x+1,1\right] & \text{Root}\left[x^3+x^2-2 x-1,2\right] & \text{Root}\left[x^3+2 x^2-x-1,3\right] \\ 1 & 1 & \text{Root}\left[x^3-x^2-2 x+1,1\right] & \text{Root}\left[x^3-x^2-2 x+1,1\right] & -1 & \text{Root}\left[x^3-2 x^2-x+1,2\right] & \text{Root}\left[x^3-2 x^2-x+1,2\right] & \text{Root}\left[x^3+x^2-2 x-1,3\right] & \text{Root}\left[x^3+2 x^2-x-1,2\right] \\ 1 & -1 & \text{Root}\left[x^3+x^2-2 x-1,2\right] & \text{Root}\left[x^3-x^2-2 x+1,2\right] & 0 & \text{Root}\left[x^3+2 x^2-x-1,3\right] & \text{Root}\left[x^3-2 x^2-x+1,1\right] & 0 & 0 \\ 1 & -1 & \text{Root}\left[x^3+x^2-2 x-1,3\right] & \text{Root}\left[x^3-x^2-2 x+1,1\right] & 0 & \text{Root}\left[x^3+2 x^2-x-1,2\right] & \text{Root}\left[x^3-2 x^2-x+1,2\right] & 0 & 0 \\ 1 & -1 & \text{Root}\left[x^3+x^2-2 x-1,1\right] & \text{Root}\left[x^3-x^2-2 x+1,3\right] & 0 & \text{Root}\left[x^3+2 x^2-x-1,1\right] & \text{Root}\left[x^3-2 x^2-x+1,3\right] & 0 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.802 & 1.802 & 2.000 & 2.247 & 2.247 & 3.604 & 4.494 \\ 1.000 & 1.000 & 1.802 & 1.802 & -1.000 & 2.247 & 2.247 & -1.802 & -2.247 \\ 1.000 & 1.000 & 0.4450 & 0.4450 & 2.000 & -0.8019 & -0.8019 & 0.8901 & -1.604 \\ 1.000 & 1.000 & -1.247 & -1.247 & 2.000 & 0.5550 & 0.5550 & -2.494 & 1.110 \\ 1.000 & 1.000 & 0.4450 & 0.4450 & -1.000 & -0.8019 & -0.8019 & -0.4450 & 0.8019 \\ 1.000 & 1.000 & -1.247 & -1.247 & -1.000 & 0.5550 & 0.5550 & 1.247 & -0.5550 \\ 1.000 & -1.000 & -0.4450 & 0.4450 & 0 & 0.8019 & -0.8019 & 0 & 0 \\ 1.000 & -1.000 & 1.247 & -1.247 & 0 & -0.5550 & 0.5550 & 0 & 0 \\ 1.000 & -1.000 & -1.802 & 1.802 & 0 & -2.247 & 2.247 & 0 & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

Data

Download links for numeric data: