\(\text{FR}^{9,0}_{2}\)

Fusion Rules

\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{8} & \mathbf{6} & \mathbf{7} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{9} \\ \mathbf{3} & \mathbf{8} & \mathbf{1} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{9} \\ \mathbf{4} & \mathbf{6} & \mathbf{7} & \mathbf{1} & \mathbf{8} & \mathbf{2} & \mathbf{3} & \mathbf{5} & \mathbf{9} \\ \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{4} & \mathbf{9} \\ \mathbf{6} & \mathbf{4} & \mathbf{5} & \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\ \mathbf{7} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{8} & \mathbf{1} & \mathbf{6} & \mathbf{9} \\ \mathbf{8} & \mathbf{3} & \mathbf{2} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{6} & \mathbf{1} & \mathbf{9} \\ \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{3} \ \mathbf{4} \ \mathbf{6} \ \mathbf{5} \ \mathbf{8} \ \mathbf{7}), (\mathbf{2} \ \mathbf{3} \ \mathbf{4} \ \mathbf{8} \ \mathbf{7} \ \mathbf{5} \ \mathbf{6}), (\mathbf{2} \ \mathbf{3} \ \mathbf{5} \ \mathbf{7} \ \mathbf{4} \ \mathbf{8} \ \mathbf{6}), (\mathbf{2} \ \mathbf{3} \ \mathbf{5} \ \mathbf{8} \ \mathbf{6} \ \mathbf{4} \ \mathbf{7}), (\mathbf{2} \ \mathbf{3} \ \mathbf{6} \ \mathbf{4} \ \mathbf{7} \ \mathbf{8} \ \mathbf{5}), (\mathbf{2} \ \mathbf{3} \ \mathbf{6} \ \mathbf{8} \ \mathbf{5} \ \mathbf{7} \ \mathbf{4}), (\mathbf{2} \ \mathbf{3} \ \mathbf{7} \ \mathbf{5} \ \mathbf{6} \ \mathbf{8} \ \mathbf{4}), (\mathbf{2} \ \mathbf{3} \ \mathbf{7} \ \mathbf{8} \ \mathbf{4} \ \mathbf{6} \ \mathbf{5}), (\mathbf{2} \ \mathbf{4} \ \mathbf{3} \ \mathbf{6} \ \mathbf{7} \ \mathbf{5} \ \mathbf{8}), (\mathbf{2} \ \mathbf{4} \ \mathbf{3} \ \mathbf{8} \ \mathbf{5} \ \mathbf{6} \ \mathbf{7}), (\mathbf{2} \ \mathbf{4} \ \mathbf{5} \ \mathbf{6} \ \mathbf{8} \ \mathbf{3} \ \mathbf{7}), (\mathbf{2} \ \mathbf{4} \ \mathbf{7} \ \mathbf{5} \ \mathbf{8} \ \mathbf{6} \ \mathbf{3}), (\mathbf{2} \ \mathbf{4} \ \mathbf{8} \ \mathbf{3} \ \mathbf{7} \ \mathbf{6} \ \mathbf{5}), (\mathbf{2} \ \mathbf{4} \ \mathbf{8} \ \mathbf{6} \ \mathbf{5} \ \mathbf{7} \ \mathbf{3}), (\mathbf{2} \ \mathbf{5} \ \mathbf{3} \ \mathbf{7} \ \mathbf{6} \ \mathbf{4} \ \mathbf{8}), (\mathbf{2} \ \mathbf{5} \ \mathbf{4} \ \mathbf{7} \ \mathbf{8} \ \mathbf{3} \ \mathbf{6}), (\mathbf{2} \ \mathbf{5} \ \mathbf{6} \ \mathbf{4} \ \mathbf{8} \ \mathbf{7} \ \mathbf{3}), (\mathbf{2} \ \mathbf{5} \ \mathbf{8} \ \mathbf{3} \ \mathbf{6} \ \mathbf{7} \ \mathbf{4})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{3}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{4}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{5}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{6}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{7}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{8}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{8}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{4},\mathbf{6}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{5},\mathbf{7}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{3},\mathbf{4},\mathbf{7}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{3},\mathbf{5},\mathbf{6}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{4},\mathbf{5},\mathbf{8}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{6},\mathbf{7},\mathbf{8}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6},\mathbf{7},\mathbf{8}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{8,0}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(1.\) \(1\)
\(\mathbf{6}\) \(1.\) \(1\)
\(\mathbf{7}\) \(1.\) \(1\)
\(\mathbf{8}\) \(1.\) \(1\)
\(\mathbf{9}\) \(3.37228\) \(\frac{1}{2} \left(1+\sqrt{33}\right)\)
\(\mathcal{D}_{FP}^2\) \(19.3723\) \(8+\frac{1}{4} \left(1+\sqrt{33}\right)^2\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{9} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{33}\right) \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{33}\right) \\ 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 0 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 0 \\ 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 0 \\ 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 0 \\ 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 3.372 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -2.372 \\ 1.000 & -1.000 & 1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 1.000 & 0 \\ 1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & 0 \\ 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & 1.000 & 0 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & 0 \\ 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & 1.000 & 1.000 & 1.000 & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

This fusion ring has no categorifications because of the $d$-number criterion.

Data

Download links for numeric data: