\(\mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{8,0}_{1}\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{8} & \mathbf{6} & \mathbf{7} & \mathbf{4} & \mathbf{5} & \mathbf{3} \\ \mathbf{3} & \mathbf{8} & \mathbf{1} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2} \\ \mathbf{4} & \mathbf{6} & \mathbf{7} & \mathbf{1} & \mathbf{8} & \mathbf{2} & \mathbf{3} & \mathbf{5} \\ \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{4} \\ \mathbf{6} & \mathbf{4} & \mathbf{5} & \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{7} \\ \mathbf{7} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{8} & \mathbf{1} & \mathbf{6} \\ \mathbf{8} & \mathbf{3} & \mathbf{2} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{6} & \mathbf{1} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{2} \ \mathbf{3} \ \mathbf{4} \ \mathbf{6} \ \mathbf{5} \ \mathbf{8} \ \mathbf{7}), (\mathbf{2} \ \mathbf{3} \ \mathbf{4} \ \mathbf{8} \ \mathbf{7} \ \mathbf{5} \ \mathbf{6}), (\mathbf{2} \ \mathbf{3} \ \mathbf{5} \ \mathbf{7} \ \mathbf{4} \ \mathbf{8} \ \mathbf{6}), (\mathbf{2} \ \mathbf{3} \ \mathbf{5} \ \mathbf{8} \ \mathbf{6} \ \mathbf{4} \ \mathbf{7}), (\mathbf{2} \ \mathbf{3} \ \mathbf{6} \ \mathbf{4} \ \mathbf{7} \ \mathbf{8} \ \mathbf{5}), (\mathbf{2} \ \mathbf{3} \ \mathbf{6} \ \mathbf{8} \ \mathbf{5} \ \mathbf{7} \ \mathbf{4}), (\mathbf{2} \ \mathbf{3} \ \mathbf{7} \ \mathbf{5} \ \mathbf{6} \ \mathbf{8} \ \mathbf{4}), (\mathbf{2} \ \mathbf{3} \ \mathbf{7} \ \mathbf{8} \ \mathbf{4} \ \mathbf{6} \ \mathbf{5}), (\mathbf{2} \ \mathbf{4} \ \mathbf{3} \ \mathbf{6} \ \mathbf{7} \ \mathbf{5} \ \mathbf{8}), (\mathbf{2} \ \mathbf{4} \ \mathbf{3} \ \mathbf{8} \ \mathbf{5} \ \mathbf{6} \ \mathbf{7}), (\mathbf{2} \ \mathbf{4} \ \mathbf{5} \ \mathbf{6} \ \mathbf{8} \ \mathbf{3} \ \mathbf{7}), (\mathbf{2} \ \mathbf{4} \ \mathbf{7} \ \mathbf{5} \ \mathbf{8} \ \mathbf{6} \ \mathbf{3}), (\mathbf{2} \ \mathbf{4} \ \mathbf{8} \ \mathbf{3} \ \mathbf{7} \ \mathbf{6} \ \mathbf{5}), (\mathbf{2} \ \mathbf{4} \ \mathbf{8} \ \mathbf{6} \ \mathbf{5} \ \mathbf{7} \ \mathbf{3}), (\mathbf{2} \ \mathbf{5} \ \mathbf{3} \ \mathbf{7} \ \mathbf{6} \ \mathbf{4} \ \mathbf{8}), (\mathbf{2} \ \mathbf{5} \ \mathbf{4} \ \mathbf{7} \ \mathbf{8} \ \mathbf{3} \ \mathbf{6}), (\mathbf{2} \ \mathbf{5} \ \mathbf{6} \ \mathbf{4} \ \mathbf{8} \ \mathbf{7} \ \mathbf{3}), (\mathbf{2} \ \mathbf{5} \ \mathbf{8} \ \mathbf{3} \ \mathbf{6} \ \mathbf{7} \ \mathbf{4})\}\]The following particles form non-trivial sub fusion rings
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(1.\) | \(1\) |
\(\mathbf{6}\) | \(1.\) | \(1\) |
\(\mathbf{7}\) | \(1.\) | \(1\) |
\(\mathbf{8}\) | \(1.\) | \(1\) |
\(\mathcal{D}_{FP}^2\) | \(8.\) | \(8\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{7} & \mathbf{4} & \mathbf{5} & \mathbf{8} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{7} & \mathbf{4} & \mathbf{5} & \mathbf{8} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 \\ 1.000 & 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 \\ 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & 1.000 \\ 1.000 & -1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 1.000 \\ 1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 1.000 & -1.000 \\ 1.000 & 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 \\ 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & 1.000 & 1.000 & 1.000 \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{1}{2 \sqrt{2}}\left(\begin{array}{cccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\ 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 \\ 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\\end{array}\right)\) | \(\begin{array}{l}\left(0,-\frac{1}{4},\frac{1}{4},-\frac{1}{4},-\frac{1}{4},\frac{1}{2},0,0\right) \\\left(0,\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},0,\frac{1}{2},0\right) \\\left(0,-\frac{1}{4},-\frac{1}{4},\frac{1}{4},-\frac{1}{4},0,0,\frac{1}{2}\right) \\\left(0,\frac{1}{4},-\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},0,0\right) \\\left(0,-\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},0,\frac{1}{2},0\right) \\\left(0,\frac{1}{4},\frac{1}{4},-\frac{1}{4},\frac{1}{4},0,0,\frac{1}{2}\right) \\\left(0,-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) \\\left(0,\frac{1}{4},\frac{1}{4},\frac{1}{4},-\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\end{array}\) |
Adjoint Subring
The adjoint subring is the trivial ring.
The upper central series is the following: \(\mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{4}', \text{deg}(\mathbf{5}) = \mathbf{5}', \text{deg}(\mathbf{6}) = \mathbf{6}', \text{deg}(\mathbf{7}) = \mathbf{7}', \text{deg}(\mathbf{8}) = \mathbf{8}'\), where the degrees form the group \(\mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|llllllll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' & \mathbf{5}' & \mathbf{6}' & \mathbf{7}' & \mathbf{8}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{8}' & \mathbf{6}' & \mathbf{7}' & \mathbf{4}' & \mathbf{5}' & \mathbf{3}' \\ \mathbf{3}' & \mathbf{8}' & \mathbf{1}' & \mathbf{7}' & \mathbf{6}' & \mathbf{5}' & \mathbf{4}' & \mathbf{2}' \\ \mathbf{4}' & \mathbf{6}' & \mathbf{7}' & \mathbf{1}' & \mathbf{8}' & \mathbf{2}' & \mathbf{3}' & \mathbf{5}' \\ \mathbf{5}' & \mathbf{7}' & \mathbf{6}' & \mathbf{8}' & \mathbf{1}' & \mathbf{3}' & \mathbf{2}' & \mathbf{4}' \\ \mathbf{6}' & \mathbf{4}' & \mathbf{5}' & \mathbf{2}' & \mathbf{3}' & \mathbf{1}' & \mathbf{8}' & \mathbf{7}' \\ \mathbf{7}' & \mathbf{5}' & \mathbf{4}' & \mathbf{3}' & \mathbf{2}' & \mathbf{8}' & \mathbf{1}' & \mathbf{6}' \\ \mathbf{8}' & \mathbf{3}' & \mathbf{2}' & \mathbf{5}' & \mathbf{4}' & \mathbf{7}' & \mathbf{6}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: