FR 5 8 , 6 \text{FR}^{8,6}_{5} FR 5 8 , 6
Fusion Rules
1 2 3 4 5 6 7 8 2 1 6 5 4 3 8 7 3 6 4 1 2 5 7 8 4 5 1 3 6 2 7 8 5 4 2 6 3 1 8 7 6 3 5 2 1 4 8 7 7 8 7 7 8 8 2 + 5 + 6 1 + 3 + 4 8 7 8 8 7 7 1 + 3 + 4 2 + 5 + 6 \begin{array}{|llllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\
\mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} \\
\mathbf{3} & \mathbf{6} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\
\mathbf{4} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\
\mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{6} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{7} \\
\mathbf{6} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{8} & \mathbf{7} \\
\mathbf{7} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{2}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\
\mathbf{8} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{5}+\mathbf{6} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 2 1 6 5 4 3 8 7 3 6 4 1 2 5 7 8 4 5 1 3 6 2 7 8 5 4 2 6 3 1 8 7 6 3 5 2 1 4 8 7 7 8 7 7 8 8 2 + 5 + 6 1 + 3 + 4 8 7 8 8 7 7 1 + 3 + 4 2 + 5 + 6
The fusion rules are invariant under the group generated by the following permutations:
{ ( 7 8 ) , ( 3 4 ) ( 5 6 ) } \{(\mathbf{7} \ \mathbf{8}), (\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6})\} { ( 7 8 ) , ( 3 4 ) ( 5 6 ) }
The following particles form non-trivial sub fusion rings
Particles
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 3 , 4 } \{\mathbf{1},\mathbf{3},\mathbf{4}\} { 1 , 3 , 4 }
Z 3 : FR 1 3 , 2 \mathbb{Z}_3:\ \text{FR}^{3,2}_{1} Z 3 : FR 1 3 , 2
{ 1 , 2 , 3 , 4 , 5 , 6 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\} { 1 , 2 , 3 , 4 , 5 , 6 }
Z 6 : FR 1 6 , 4 \mathbb{Z}_6:\ \text{FR}^{6,4}_{1} Z 6 : FR 1 6 , 4
Quantum Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
1. 1. 1 .
1 1 1
6 \mathbf{6} 6
1. 1. 1 .
1 1 1
7 \mathbf{7} 7
1.73205 1.73205 1 . 7 3 2 0 5
3 \sqrt{3} 3
8 \mathbf{8} 8
1.73205 1.73205 1 . 7 3 2 0 5
3 \sqrt{3} 3
D F P 2 \mathcal{D}_{FP}^2 D F P 2
12. 12. 1 2 .
12 12 1 2
Characters
The symbolic character table is the following
1 4 5 3 6 2 7 8 1 1 1 1 1 1 3 3 1 1 1 1 1 1 − 3 − 3 1 1 2 ( − 1 − i 3 ) 1 2 ( 1 + i 3 ) 1 2 ( − 1 + i 3 ) 1 2 ( 1 − i 3 ) − 1 0 0 1 1 2 ( − 1 + i 3 ) 1 2 ( 1 − i 3 ) 1 2 ( − 1 − i 3 ) 1 2 ( 1 + i 3 ) − 1 0 0 1 1 − 1 1 − 1 − 1 i 3 − i 3 1 1 − 1 1 − 1 − 1 − i 3 i 3 1 1 2 ( − 1 + i 3 ) 1 2 ( − 1 + i 3 ) 1 2 ( − 1 − i 3 ) 1 2 ( − 1 − i 3 ) 1 0 0 1 1 2 ( − 1 − i 3 ) 1 2 ( − 1 − i 3 ) 1 2 ( − 1 + i 3 ) 1 2 ( − 1 + i 3 ) 1 0 0 \begin{array}{|cccccccc|}
\hline
\mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & \sqrt{3} & \sqrt{3} \\
1 & 1 & 1 & 1 & 1 & 1 & -\sqrt{3} & -\sqrt{3} \\
1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & -1 & 0 & 0 \\
1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & -1 & 0 & 0 \\
1 & 1 & -1 & 1 & -1 & -1 & i \sqrt{3} & -i \sqrt{3} \\
1 & 1 & -1 & 1 & -1 & -1 & -i \sqrt{3} & i \sqrt{3} \\
1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 & 0 & 0 \\
1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 & 0 & 0 \\
\hline
\end{array} 1 1 1 1 1 1 1 1 1 4 1 1 2 1 ( − 1 − i 3 ) 2 1 ( − 1 + i 3 ) 1 1 2 1 ( − 1 + i 3 ) 2 1 ( − 1 − i 3 ) 5 1 1 2 1 ( 1 + i 3 ) 2 1 ( 1 − i 3 ) − 1 − 1 2 1 ( − 1 + i 3 ) 2 1 ( − 1 − i 3 ) 3 1 1 2 1 ( − 1 + i 3 ) 2 1 ( − 1 − i 3 ) 1 1 2 1 ( − 1 − i 3 ) 2 1 ( − 1 + i 3 ) 6 1 1 2 1 ( 1 − i 3 ) 2 1 ( 1 + i 3 ) − 1 − 1 2 1 ( − 1 − i 3 ) 2 1 ( − 1 + i 3 ) 2 1 1 − 1 − 1 − 1 − 1 1 1 7 3 − 3 0 0 i 3 − i 3 0 0 8 3 − 3 0 0 − i 3 i 3 0 0
The numeric character table is the following
1 4 5 3 6 2 7 8 1.000 1.000 1.000 1.000 1.000 1.000 1.732 1.732 1.000 1.000 1.000 1.000 1.000 1.000 − 1.732 − 1.732 1.000 − 0.5000 − 0.8660 i 0.5000 + 0.8660 i − 0.5000 + 0.8660 i 0.5000 − 0.8660 i − 1.000 0 0 1.000 − 0.5000 + 0.8660 i 0.5000 − 0.8660 i − 0.5000 − 0.8660 i 0.5000 + 0.8660 i − 1.000 0 0 1.000 1.000 − 1.000 1.000 − 1.000 − 1.000 1.732 i − 1.732 i 1.000 1.000 − 1.000 1.000 − 1.000 − 1.000 − 1.732 i 1.732 i 1.000 − 0.5000 + 0.8660 i − 0.5000 + 0.8660 i − 0.5000 − 0.8660 i − 0.5000 − 0.8660 i 1.000 0 0 1.000 − 0.5000 − 0.8660 i − 0.5000 − 0.8660 i − 0.5000 + 0.8660 i − 0.5000 + 0.8660 i 1.000 0 0 \begin{array}{|rrrrrrrr|}
\hline
\mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.732 & 1.732 \\
1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -1.732 & -1.732 \\
1.000 & -0.5000-0.8660 i & 0.5000+0.8660 i & -0.5000+0.8660 i & 0.5000-0.8660 i & -1.000 & 0 & 0 \\
1.000 & -0.5000+0.8660 i & 0.5000-0.8660 i & -0.5000-0.8660 i & 0.5000+0.8660 i & -1.000 & 0 & 0 \\
1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & 1.732 i & -1.732 i \\
1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.732 i & 1.732 i \\
1.000 & -0.5000+0.8660 i & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.5000-0.8660 i & 1.000 & 0 & 0 \\
1.000 & -0.5000-0.8660 i & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.5000+0.8660 i & 1.000 & 0 & 0 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 4 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i 5 1 . 0 0 0 1 . 0 0 0 0 . 5 0 0 0 + 0 . 8 6 6 0 i 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 1 . 0 0 0 − 1 . 0 0 0 − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i 3 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i 6 1 . 0 0 0 1 . 0 0 0 0 . 5 0 0 0 − 0 . 8 6 6 0 i 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 1 . 0 0 0 − 1 . 0 0 0 − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i 2 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 7 1 . 7 3 2 − 1 . 7 3 2 0 0 1 . 7 3 2 i − 1 . 7 3 2 i 0 0 8 1 . 7 3 2 − 1 . 7 3 2 0 0 − 1 . 7 3 2 i 1 . 7 3 2 i 0 0
Modular Data
This fusion ring does not have any matching S S S -and T T T -matrices.
Adjoint Subring
Particles 1 , 3 , 4 \mathbf{1}, \mathbf{3}, \mathbf{4} 1 , 3 , 4 , form the adjoint subring Z 3 : FR 1 3 , 2 \mathbb{Z}_3:\ \text{FR}^{3,2}_{1} Z 3 : FR 1 3 , 2 .
The upper central series is the following:
FR 5 8 , 6 ⊃ 1 , 3 , 4 Z 3 ⊃ 1 Trivial \text{FR}^{8,6}_{5} \underset{ \mathbf{1}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_3 \underset{ \mathbf{1} }{\supset} \text{Trivial} FR 5 8 , 6 1 , 3 , 4 ⊃ Z 3 1 ⊃ Trivial
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 2 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 3 ′ , deg ( 8 ) = 4 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{3}', \text{deg}(\mathbf{8}) = \mathbf{4}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 2 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 3 ′ , deg ( 8 ) = 4 ′ , where the degrees form the group Z 4 \mathbb{Z}_4 Z 4 with multiplication table:
1 ′ 2 ′ 3 ′ 4 ′ 2 ′ 1 ′ 4 ′ 3 ′ 3 ′ 4 ′ 2 ′ 1 ′ 4 ′ 3 ′ 1 ′ 2 ′ \begin{array}{|llll|}
\hline
\mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' \\
\mathbf{2}' & \mathbf{1}' & \mathbf{4}' & \mathbf{3}' \\
\mathbf{3}' & \mathbf{4}' & \mathbf{2}' & \mathbf{1}' \\
\mathbf{4}' & \mathbf{3}' & \mathbf{1}' & \mathbf{2}' \\
\hline
\end{array} 1 ′ 2 ′ 3 ′ 4 ′ 2 ′ 1 ′ 4 ′ 3 ′ 3 ′ 4 ′ 2 ′ 1 ′ 4 ′ 3 ′ 1 ′ 2 ′
Categorifications
Data
Download links for numeric data: