FR58,6\text{FR}^{8,6}_{5}

Fusion Rules

1234567821654387364125784513627854263187635214877877882+5+61+3+48788771+3+42+5+6\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{6} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\ \mathbf{4} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\ \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{6} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{7} \\ \mathbf{6} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{8} & \mathbf{7} \\ \mathbf{7} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{2}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4} \\ \mathbf{8} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{4} & \mathbf{2}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(7 8),(3 4)(5 6)}\{(\mathbf{7} \ \mathbf{8}), (\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6})\}

The following particles form non-trivial sub fusion rings

Particles SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,3,4}\{\mathbf{1},\mathbf{3},\mathbf{4}\} Z3: FR13,2\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}
{1,2,3,4,5,6}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\} Z6: FR16,4\mathbb{Z}_6:\ \text{FR}^{6,4}_{1}

Quantum Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 1.1. 11
6\mathbf{6} 1.1. 11
7\mathbf{7} 1.732051.73205 3\sqrt{3}
8\mathbf{8} 1.732051.73205 3\sqrt{3}
DFP2\mathcal{D}_{FP}^2 12.12. 1212

Characters

The symbolic character table is the following

145362781111113311111133112(1i3)12(1+i3)12(1+i3)12(1i3)100112(1+i3)12(1i3)12(1i3)12(1+i3)100111111i3i3111111i3i3112(1+i3)12(1+i3)12(1i3)12(1i3)100112(1i3)12(1i3)12(1+i3)12(1+i3)100\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \sqrt{3} & \sqrt{3} \\ 1 & 1 & 1 & 1 & 1 & 1 & -\sqrt{3} & -\sqrt{3} \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & -1 & 0 & 0 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & -1 & 0 & 0 \\ 1 & 1 & -1 & 1 & -1 & -1 & i \sqrt{3} & -i \sqrt{3} \\ 1 & 1 & -1 & 1 & -1 & -1 & -i \sqrt{3} & i \sqrt{3} \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 & 0 & 0 \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 & 0 & 0 \\ \hline \end{array}

The numeric character table is the following

145362781.0001.0001.0001.0001.0001.0001.7321.7321.0001.0001.0001.0001.0001.0001.7321.7321.0000.50000.8660i0.5000+0.8660i0.5000+0.8660i0.50000.8660i1.000001.0000.5000+0.8660i0.50000.8660i0.50000.8660i0.5000+0.8660i1.000001.0001.0001.0001.0001.0001.0001.732i1.732i1.0001.0001.0001.0001.0001.0001.732i1.732i1.0000.5000+0.8660i0.5000+0.8660i0.50000.8660i0.50000.8660i1.000001.0000.50000.8660i0.50000.8660i0.5000+0.8660i0.5000+0.8660i1.00000\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{4} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.732 & 1.732 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -1.732 & -1.732 \\ 1.000 & -0.5000-0.8660 i & 0.5000+0.8660 i & -0.5000+0.8660 i & 0.5000-0.8660 i & -1.000 & 0 & 0 \\ 1.000 & -0.5000+0.8660 i & 0.5000-0.8660 i & -0.5000-0.8660 i & 0.5000+0.8660 i & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & 1.732 i & -1.732 i \\ 1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.732 i & 1.732 i \\ 1.000 & -0.5000+0.8660 i & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.5000-0.8660 i & 1.000 & 0 & 0 \\ 1.000 & -0.5000-0.8660 i & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.5000+0.8660 i & 1.000 & 0 & 0 \\ \hline \end{array}

Modular Data

This fusion ring does not have any matching SS-and TT-matrices.

Adjoint Subring

Particles 1,3,4\mathbf{1}, \mathbf{3}, \mathbf{4}, form the adjoint subring Z3: FR13,2\mathbb{Z}_3:\ \text{FR}^{3,2}_{1} .

The upper central series is the following: FR58,61,3,4Z31Trivial\text{FR}^{8,6}_{5} \underset{ \mathbf{1}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_3 \underset{ \mathbf{1} }{\supset} \text{Trivial}

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=2,deg(3)=1,deg(4)=1,deg(5)=2,deg(6)=2,deg(7)=3,deg(8)=4\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{3}', \text{deg}(\mathbf{8}) = \mathbf{4}', where the degrees form the group Z4\mathbb{Z}_4 with multiplication table:

1234214334214312\begin{array}{|llll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{4}' & \mathbf{3}' \\ \mathbf{3}' & \mathbf{4}' & \mathbf{2}' & \mathbf{1}' \\ \mathbf{4}' & \mathbf{3}' & \mathbf{1}' & \mathbf{2}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: