\(\text{Fib× \times × Potts}:\ \text{FR}^{8,4}_{9}\)
Fusion Rules
1 2 3 4 5 6 7 8 2 3 1 6 4 5 7 8 3 1 2 5 6 4 7 8 4 6 5 1 + 4 3 + 5 2 + 6 8 7 + 8 5 4 6 3 + 5 2 + 6 1 + 4 8 7 + 8 6 5 4 2 + 6 1 + 4 3 + 5 8 7 + 8 7 7 7 8 8 8 1 + 2 + 3 4 + 5 + 6 8 8 8 7 + 8 7 + 8 7 + 8 4 + 5 + 6 1 + 2 + 3 + 4 + 5 + 6 \begin{array}{|llllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\
\mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\
\mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\
\mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\
\mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\
\mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\
\mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{4}+\mathbf{5}+\mathbf{6} \\
\mathbf{8} & \mathbf{8} & \mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 2 3 1 6 4 5 7 8 3 1 2 5 6 4 7 8 4 6 5 1 + 4 3 + 5 2 + 6 8 7 + 8 5 4 6 3 + 5 2 + 6 1 + 4 8 7 + 8 6 5 4 2 + 6 1 + 4 3 + 5 8 7 + 8 7 7 7 8 8 8 1 + 2 + 3 4 + 5 + 6 8 8 8 7 + 8 7 + 8 7 + 8 4 + 5 + 6 1 + 2 + 3 + 4 + 5 + 6
The fusion rules are invariant under the group generated by the following permutations:
{ ( 2 3 ) ( 5 6 ) } \{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6})\} { ( 2 3 ) ( 5 6 ) }
The following elements form non-trivial sub fusion rings
Elements
SubRing
{ 1 , 4 } \{\mathbf{1},\mathbf{4}\} { 1 , 4 }
Fib : FR 2 2 , 0 \text{Fib}:\ \text{FR}^{2,0}_{2} Fib : FR 2 2 , 0
{ 1 , 2 , 3 } \{\mathbf{1},\mathbf{2},\mathbf{3}\} { 1 , 2 , 3 }
Z 3 : FR 1 3 , 2 \mathbb{Z}_3:\ \text{FR}^{3,2}_{1} Z 3 : FR 1 3 , 2
{ 1 , 2 , 3 , 7 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{7}\} { 1 , 2 , 3 , 7 }
Potts : FR 2 4 , 2 \text{Potts}:\ \text{FR}^{4,2}_{2} Potts : FR 2 4 , 2
{ 1 , 2 , 3 , 4 , 5 , 6 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\} { 1 , 2 , 3 , 4 , 5 , 6 }
\(\text{Fib× \times × }\mathbb{Z}_3:\ \text{FR}^{6,4}_{5}\)
Frobenius-Perron Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1.61803 1.61803 1 . 6 1 8 0 3
1 2 ( 1 + 5 ) \frac{1}{2} \left(1+\sqrt{5}\right) 2 1 ( 1 + 5 )
5 \mathbf{5} 5
1.61803 1.61803 1 . 6 1 8 0 3
1 2 ( 1 + 5 ) \frac{1}{2} \left(1+\sqrt{5}\right) 2 1 ( 1 + 5 )
6 \mathbf{6} 6
1.61803 1.61803 1 . 6 1 8 0 3
1 2 ( 1 + 5 ) \frac{1}{2} \left(1+\sqrt{5}\right) 2 1 ( 1 + 5 )
7 \mathbf{7} 7
1.73205 1.73205 1 . 7 3 2 0 5
3 \sqrt{3} 3
8 \mathbf{8} 8
2.80252 2.80252 2 . 8 0 2 5 2
3 2 ( 3 + 5 ) \sqrt{\frac{3}{2} \left(3+\sqrt{5}\right)} 2 3 ( 3 + 5 )
D F P 2 \mathcal{D}_{FP}^2 D F P 2
21.7082 21.7082 2 1 . 7 0 8 2
6 + 3 4 ( 1 + 5 ) 2 + 3 2 ( 3 + 5 ) 6+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\frac{3}{2} \left(3+\sqrt{5}\right) 6 + 4 3 ( 1 + 5 ) 2 + 2 3 ( 3 + 5 )
Characters
The symbolic character table is the following
1 2 3 6 5 4 7 8 1 1 1 1 2 ( 1 + 5 ) 1 2 ( 1 + 5 ) 1 2 ( 1 + 5 ) 3 Root [ x 4 − 9 x 2 + 9 , 4 ] 1 1 1 1 2 ( 1 + 5 ) 1 2 ( 1 + 5 ) 1 2 ( 1 + 5 ) − 3 Root [ x 4 − 9 x 2 + 9 , 1 ] 1 1 1 1 2 ( 1 − 5 ) 1 2 ( 1 − 5 ) 1 2 ( 1 − 5 ) 3 Root [ x 4 − 9 x 2 + 9 , 2 ] 1 1 1 1 2 ( 1 − 5 ) 1 2 ( 1 − 5 ) 1 2 ( 1 − 5 ) − 3 Root [ x 4 − 9 x 2 + 9 , 3 ] 1 1 2 ( − 1 − i 3 ) 1 2 ( − 1 + i 3 ) Root [ x 4 + x 3 + 2 x 2 − x + 1 , 4 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 3 ] 1 2 ( 1 − 5 ) 0 0 1 1 2 ( − 1 + i 3 ) 1 2 ( − 1 − i 3 ) Root [ x 4 + x 3 + 2 x 2 − x + 1 , 3 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 4 ] 1 2 ( 1 − 5 ) 0 0 1 1 2 ( − 1 + i 3 ) 1 2 ( − 1 − i 3 ) Root [ x 4 + x 3 + 2 x 2 − x + 1 , 2 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 1 ] 1 2 ( 1 + 5 ) 0 0 1 1 2 ( − 1 − i 3 ) 1 2 ( − 1 + i 3 ) Root [ x 4 + x 3 + 2 x 2 − x + 1 , 1 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 2 ] 1 2 ( 1 + 5 ) 0 0 \begin{array}{|cccccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\
\hline
1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{3} & \text{Root}\left[x^4-9 x^2+9,4\right] \\
1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & -\sqrt{3} & \text{Root}\left[x^4-9 x^2+9,1\right] \\
1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \sqrt{3} & \text{Root}\left[x^4-9 x^2+9,2\right] \\
1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & -\sqrt{3} & \text{Root}\left[x^4-9 x^2+9,3\right] \\
1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,4\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,3\right] & \frac{1}{2} \left(1-\sqrt{5}\right) & 0 & 0 \\
1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,3\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,4\right] & \frac{1}{2} \left(1-\sqrt{5}\right) & 0 & 0 \\
1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,2\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,1\right] & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & 0 \\
1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,1\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,2\right] & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & 0 \\
\hline
\end{array} 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 ( − 1 − i 3 ) 2 1 ( − 1 + i 3 ) 2 1 ( − 1 + i 3 ) 2 1 ( − 1 − i 3 ) 3 1 1 1 1 2 1 ( − 1 + i 3 ) 2 1 ( − 1 − i 3 ) 2 1 ( − 1 − i 3 ) 2 1 ( − 1 + i 3 ) 6 2 1 ( 1 + 5 ) 2 1 ( 1 + 5 ) 2 1 ( 1 − 5 ) 2 1 ( 1 − 5 ) Root [ x 4 + x 3 + 2 x 2 − x + 1 , 4 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 3 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 2 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 1 ] 5 2 1 ( 1 + 5 ) 2 1 ( 1 + 5 ) 2 1 ( 1 − 5 ) 2 1 ( 1 − 5 ) Root [ x 4 + x 3 + 2 x 2 − x + 1 , 3 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 4 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 1 ] Root [ x 4 + x 3 + 2 x 2 − x + 1 , 2 ] 4 2 1 ( 1 + 5 ) 2 1 ( 1 + 5 ) 2 1 ( 1 − 5 ) 2 1 ( 1 − 5 ) 2 1 ( 1 − 5 ) 2 1 ( 1 − 5 ) 2 1 ( 1 + 5 ) 2 1 ( 1 + 5 ) 7 3 − 3 3 − 3 0 0 0 0 8 Root [ x 4 − 9 x 2 + 9 , 4 ] Root [ x 4 − 9 x 2 + 9 , 1 ] Root [ x 4 − 9 x 2 + 9 , 2 ] Root [ x 4 − 9 x 2 + 9 , 3 ] 0 0 0 0
The numeric character table is the following
1 2 3 6 5 4 7 8 1.000 1.000 1.000 1.618 1.618 1.618 1.732 2.803 1.000 1.000 1.000 1.618 1.618 1.618 − 1.732 − 2.803 1.000 1.000 1.000 − 0.6180 − 0.6180 − 0.6180 1.732 − 1.070 1.000 1.000 1.000 − 0.6180 − 0.6180 − 0.6180 − 1.732 1.070 1.000 − 0.5000 − 0.8660 i − 0.5000 + 0.8660 i 0.3090 + 0.5352 i 0.3090 − 0.5352 i − 0.6180 0 0 1.000 − 0.5000 + 0.8660 i − 0.5000 − 0.8660 i 0.3090 − 0.5352 i 0.3090 + 0.5352 i − 0.6180 0 0 1.000 − 0.5000 + 0.8660 i − 0.5000 − 0.8660 i − 0.809 + 1.401 i − 0.809 − 1.401 i 1.618 0 0 1.000 − 0.5000 − 0.8660 i − 0.5000 + 0.8660 i − 0.809 − 1.401 i − 0.809 + 1.401 i 1.618 0 0 \begin{array}{|rrrrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\
\hline
1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 & 1.732 & 2.803 \\
1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 & -1.732 & -2.803 \\
1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 & 1.732 & -1.070 \\
1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 & -1.732 & 1.070 \\
1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0.3090+0.5352 i & 0.3090-0.5352 i & -0.6180 & 0 & 0 \\
1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0.3090-0.5352 i & 0.3090+0.5352 i & -0.6180 & 0 & 0 \\
1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.809+1.401 i & -0.809-1.401 i & 1.618 & 0 & 0 \\
1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.809-1.401 i & -0.809+1.401 i & 1.618 & 0 & 0 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i 3 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 0 . 5 0 0 0 + 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 − 0 . 8 6 6 0 i − 0 . 5 0 0 0 + 0 . 8 6 6 0 i 6 1 . 6 1 8 1 . 6 1 8 − 0 . 6 1 8 0 − 0 . 6 1 8 0 0 . 3 0 9 0 + 0 . 5 3 5 2 i 0 . 3 0 9 0 − 0 . 5 3 5 2 i − 0 . 8 0 9 + 1 . 4 0 1 i − 0 . 8 0 9 − 1 . 4 0 1 i 5 1 . 6 1 8 1 . 6 1 8 − 0 . 6 1 8 0 − 0 . 6 1 8 0 0 . 3 0 9 0 − 0 . 5 3 5 2 i 0 . 3 0 9 0 + 0 . 5 3 5 2 i − 0 . 8 0 9 − 1 . 4 0 1 i − 0 . 8 0 9 + 1 . 4 0 1 i 4 1 . 6 1 8 1 . 6 1 8 − 0 . 6 1 8 0 − 0 . 6 1 8 0 − 0 . 6 1 8 0 − 0 . 6 1 8 0 1 . 6 1 8 1 . 6 1 8 7 1 . 7 3 2 − 1 . 7 3 2 1 . 7 3 2 − 1 . 7 3 2 0 0 0 0 8 2 . 8 0 3 − 2 . 8 0 3 − 1 . 0 7 0 1 . 0 7 0 0 0 0 0
Representations of S L 2 ( Z ) SL_2(\mathbb{Z}) S L 2 ( Z )
This fusion ring does not provide any representations of S L 2 ( Z ) . SL_2(\mathbb{Z}). S L 2 ( Z ) .
Adjoint Subring
Elements 1 , 2 , 3 , 4 , 5 , 6 \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6} 1 , 2 , 3 , 4 , 5 , 6 , form the adjoint subring \(\text{Fib× \times × }\mathbb{Z}_3:\ \text{FR}^{6,4}_{5}\) .
The upper central series is the following:
\(\text{Fib× \times × Potts} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6} }{\supset} \text{Fib× \times × }\mathbb{Z}_3 \underset{ \mathbf{1}, \mathbf{2} }{\supset} \text{Fib}\)
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 2 ′ , deg ( 8 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 2 ′ , deg ( 8 ) = 2 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: