\(\text{Fib$\times $Potts}:\ \text{FR}^{8,4}_{9}\)

Fusion Rules

\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\ \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{8} & \mathbf{8} & \mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{4}\}\) \(\text{Fib}:\ \text{FR}^{2,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3}\}\) \(\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{7}\}\) \(\text{Potts}:\ \text{FR}^{4,2}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\}\) \(\text{Fib$\times $}\mathbb{Z}_3:\ \text{FR}^{6,4}_{5}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.61803\) \(\frac{1}{2} \left(1+\sqrt{5}\right)\)
\(\mathbf{5}\) \(1.61803\) \(\frac{1}{2} \left(1+\sqrt{5}\right)\)
\(\mathbf{6}\) \(1.61803\) \(\frac{1}{2} \left(1+\sqrt{5}\right)\)
\(\mathbf{7}\) \(1.73205\) \(\sqrt{3}\)
\(\mathbf{8}\) \(2.80252\) \(\sqrt{\frac{3}{2} \left(3+\sqrt{5}\right)}\)
\(\mathcal{D}_{FP}^2\) \(21.7082\) \(6+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\frac{3}{2} \left(3+\sqrt{5}\right)\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\ \hline 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{3} & \text{Root}\left[x^4-9 x^2+9,4\right] \\ 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & -\sqrt{3} & \text{Root}\left[x^4-9 x^2+9,1\right] \\ 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \sqrt{3} & \text{Root}\left[x^4-9 x^2+9,2\right] \\ 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & -\sqrt{3} & \text{Root}\left[x^4-9 x^2+9,3\right] \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,4\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,3\right] & \frac{1}{2} \left(1-\sqrt{5}\right) & 0 & 0 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,3\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,4\right] & \frac{1}{2} \left(1-\sqrt{5}\right) & 0 & 0 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,2\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,1\right] & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & 0 \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \text{Root}\left[x^4+x^3+2 x^2-x+1,1\right] & \text{Root}\left[x^4+x^3+2 x^2-x+1,2\right] & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\ \hline 1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 & 1.732 & 2.803 \\ 1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 & -1.732 & -2.803 \\ 1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 & 1.732 & -1.070 \\ 1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 & -1.732 & 1.070 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0.3090+0.5352 i & 0.3090-0.5352 i & -0.6180 & 0 & 0 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0.3090-0.5352 i & 0.3090+0.5352 i & -0.6180 & 0 & 0 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.809+1.401 i & -0.809-1.401 i & 1.618 & 0 & 0 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.809-1.401 i & -0.809+1.401 i & 1.618 & 0 & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\), form the adjoint subring \(\text{Fib$\times $}\mathbb{Z}_3:\ \text{FR}^{6,4}_{5}\) .

The upper central series is the following: \(\text{Fib$\times $Potts} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6} }{\supset} \text{Fib$\times $}\mathbb{Z}_3 \underset{ \mathbf{1}, \mathbf{2} }{\supset} \text{Fib}\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: