\(\left.\mathbb{Z}_2\text{$\times $Fib(}\mathbb{Z}_3\right):\ \text{FR}^{8,4}_{4}\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{6} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\ \mathbf{4} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{6} & \mathbf{2} & \mathbf{7} & \mathbf{8} \\ \mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{6} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{7} \\ \mathbf{6} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{8} & \mathbf{7} \\ \mathbf{7} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{8} & \mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} \\ \mathbf{8} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{8} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{3},\mathbf{4}\}\) | \(\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}\) |
\(\{\mathbf{1},\mathbf{3},\mathbf{4},\mathbf{8}\}\) | \(\left.\text{Fib(}\mathbb{Z}_3\right):\ \text{FR}^{4,2}_{3}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\}\) | \(\mathbb{Z}_6:\ \text{FR}^{6,4}_{1}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(1.\) | \(1\) |
\(\mathbf{6}\) | \(1.\) | \(1\) |
\(\mathbf{7}\) | \(2.30278\) | \(\frac{1}{2} \left(1+\sqrt{13}\right)\) |
\(\mathbf{8}\) | \(2.30278\) | \(\frac{1}{2} \left(1+\sqrt{13}\right)\) |
\(\mathcal{D}_{FP}^2\) | \(16.6056\) | \(6+\frac{1}{2} \left(1+\sqrt{13}\right)^2\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{3} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{4} \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{13}\right) & \frac{1}{2} \left(1+\sqrt{13}\right) \\ 1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{13}\right) & \frac{1}{2} \left(1-\sqrt{13}\right) \\ 1 & -1 & 1 & 1 & -1 & -1 & \frac{1}{2} \left(1+\sqrt{13}\right) & \frac{1}{2} \left(-1-\sqrt{13}\right) \\ 1 & -1 & 1 & 1 & -1 & -1 & \frac{1}{2} \left(1-\sqrt{13}\right) & \frac{1}{2} \left(\sqrt{13}-1\right) \\ 1 & 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 0 & 0 \\ 1 & 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 0 & 0 \\ 1 & -1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & 0 & 0 \\ 1 & -1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & 0 & 0 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{3} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{4} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 2.303 & 2.303 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -1.303 & -1.303 \\ 1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 2.303 & -2.303 \\ 1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.303 & 1.303 \\ 1.000 & 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.5000-0.8660 i & -0.5000+0.8660 i & 0 & 0 \\ 1.000 & 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.5000+0.8660 i & -0.5000-0.8660 i & 0 & 0 \\ 1.000 & -1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0.5000+0.8660 i & 0.5000-0.8660 i & 0 & 0 \\ 1.000 & -1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0.5000-0.8660 i & 0.5000+0.8660 i & 0 & 0 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{8}\), form the adjoint subring \(\left.\text{Fib(}\mathbb{Z}_3\right):\ \text{FR}^{4,2}_{3}\) .
The upper central series is the following: \(\left.\mathbb{Z}_2\text{$\times $Fib(}\mathbb{Z}_3\right) \underset{ \mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{8} }{\supset} \left.\text{Fib(}\mathbb{Z}_3\right)\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{1}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
This fusion ring has no categorifications because of the $d$-number criterion.
Data
Download links for numeric data: