\(\text{SU}(2)_7:\ \text{FR}^{8,0}_{15}\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{4} & \mathbf{1}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{8} & \mathbf{5}+\mathbf{7} & \mathbf{6}+\mathbf{8} \\ \mathbf{4} & \mathbf{3} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{5} & \mathbf{4}+\mathbf{8} & \mathbf{3}+\mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{5}+\mathbf{7} \\ \mathbf{5} & \mathbf{6} & \mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{8} & \mathbf{1}+\mathbf{5}+\mathbf{7} & \mathbf{2}+\mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{8} \\ \mathbf{6} & \mathbf{5} & \mathbf{4}+\mathbf{8} & \mathbf{3}+\mathbf{7} & \mathbf{2}+\mathbf{6}+\mathbf{8} & \mathbf{1}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{7} \\ \mathbf{7} & \mathbf{8} & \mathbf{5}+\mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{2}+\mathbf{4}+\mathbf{6}+\mathbf{8} \\ \mathbf{8} & \mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{2}+\mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{5}+\mathbf{7} \\ \hline \end{array}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{3},\mathbf{5},\mathbf{7}\}\) | \(\text{PSU(2})_7:\ \text{FR}^{4,0}_{6}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.87939\) | \(\text{Root}\left[x^3-3 x-1,3\right]\) |
\(\mathbf{4}\) | \(1.87939\) | \(\text{Root}\left[x^3-3 x-1,3\right]\) |
\(\mathbf{5}\) | \(2.53209\) | \(\text{Root}\left[x^3-3 x^2+3,3\right]\) |
\(\mathbf{6}\) | \(2.53209\) | \(\text{Root}\left[x^3-3 x^2+3,3\right]\) |
\(\mathbf{7}\) | \(2.87939\) | \(\text{Root}\left[x^3-3 x^2+1,3\right]\) |
\(\mathbf{8}\) | \(2.87939\) | \(\text{Root}\left[x^3-3 x^2+1,3\right]\) |
\(\mathcal{D}_{FP}^2\) | \(38.4688\) | \(2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \hline 1 & 1 & \text{Root}\left[x^3-3 x-1,3\right] & \text{Root}\left[x^3-3 x-1,3\right] & \text{Root}\left[x^3-3 x^2+3,3\right] & \text{Root}\left[x^3-3 x^2+3,3\right] & \text{Root}\left[x^3-3 x^2+1,3\right] & \text{Root}\left[x^3-3 x^2+1,3\right] \\ 1 & 1 & 1 & 1 & 0 & 0 & -1 & -1 \\ 1 & 1 & \text{Root}\left[x^3-3 x-1,2\right] & \text{Root}\left[x^3-3 x-1,2\right] & \text{Root}\left[x^3-3 x^2+3,1\right] & \text{Root}\left[x^3-3 x^2+3,1\right] & \text{Root}\left[x^3-3 x^2+1,2\right] & \text{Root}\left[x^3-3 x^2+1,2\right] \\ 1 & 1 & \text{Root}\left[x^3-3 x-1,1\right] & \text{Root}\left[x^3-3 x-1,1\right] & \text{Root}\left[x^3-3 x^2+3,2\right] & \text{Root}\left[x^3-3 x^2+3,2\right] & \text{Root}\left[x^3-3 x^2+1,1\right] & \text{Root}\left[x^3-3 x^2+1,1\right] \\ 1 & -1 & \text{Root}\left[x^3-3 x-1,3\right] & \text{Root}\left[x^3-3 x+1,1\right] & \text{Root}\left[x^3-3 x^2+3,3\right] & \text{Root}\left[x^3+3 x^2-3,1\right] & \text{Root}\left[x^3+3 x^2-1,1\right] & \text{Root}\left[x^3-3 x^2+1,3\right] \\ 1 & -1 & 1 & -1 & 0 & 0 & 1 & -1 \\ 1 & -1 & \text{Root}\left[x^3-3 x-1,1\right] & \text{Root}\left[x^3-3 x+1,3\right] & \text{Root}\left[x^3-3 x^2+3,2\right] & \text{Root}\left[x^3+3 x^2-3,2\right] & \text{Root}\left[x^3+3 x^2-1,3\right] & \text{Root}\left[x^3-3 x^2+1,1\right] \\ 1 & -1 & \text{Root}\left[x^3-3 x-1,2\right] & \text{Root}\left[x^3-3 x+1,2\right] & \text{Root}\left[x^3-3 x^2+3,1\right] & \text{Root}\left[x^3+3 x^2-3,3\right] & \text{Root}\left[x^3+3 x^2-1,2\right] & \text{Root}\left[x^3-3 x^2+1,2\right] \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \hline 1.000 & 1.000 & 1.879 & 1.879 & 2.532 & 2.532 & 2.879 & 2.879 \\ 1.000 & 1.000 & 1.000 & 1.000 & 0 & 0 & -1.000 & -1.000 \\ 1.000 & 1.000 & -0.3473 & -0.3473 & -0.8794 & -0.8794 & 0.6527 & 0.6527 \\ 1.000 & 1.000 & -1.532 & -1.532 & 1.347 & 1.347 & -0.5321 & -0.5321 \\ 1.000 & -1.000 & 1.879 & -1.879 & 2.532 & -2.532 & -2.879 & 2.879 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & -1.532 & 1.532 & 1.347 & -1.347 & 0.5321 & -0.5321 \\ 1.000 & -1.000 & -0.3473 & 0.3473 & -0.8794 & 0.8794 & -0.6527 & 0.6527 \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{1}{\sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}\left(\begin{array}{cccccccc} \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,4\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,4\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} \\ \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,4\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,2\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,1\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} \\ \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,1\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,1\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} \\ \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,2\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,1\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,4\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} \\ \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & 0 & 0 & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} \\ \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & 0 & 0 & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} \\ \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} \\ \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,6\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,1\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,3\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,4\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & -\frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \frac{1}{\sqrt{\frac{6}{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2}}} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,5\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} & \text{Root}\left[1944 x^6-648 x^4+54 x^2-1,2\right] \sqrt{2 \text{Root}\left[x^3-3 x-1,3\right]^2+2 \text{Root}\left[x^3-3 x^2+3,3\right]^2+2 \text{Root}\left[x^3-3 x^2+1,3\right]^2+2} \\\end{array}\right)\) | \(\begin{array}{l}\left(0,\frac{1}{4},-\frac{1}{3},-\frac{1}{12},-\frac{2}{9},\frac{1}{36},\frac{1}{3},-\frac{5}{12}\right) \\\left(0,\frac{1}{4},\frac{1}{3},-\frac{5}{12},\frac{2}{9},\frac{17}{36},-\frac{1}{3},-\frac{1}{12}\right) \\\left(0,-\frac{1}{4},-\frac{1}{3},\frac{5}{12},-\frac{2}{9},-\frac{17}{36},\frac{1}{3},\frac{1}{12}\right) \\\left(0,-\frac{1}{4},\frac{1}{3},\frac{1}{12},\frac{2}{9},-\frac{1}{36},-\frac{1}{3},\frac{5}{12}\right)\end{array}\) |
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{3}, \mathbf{5}, \mathbf{7}\), form the adjoint subring \(\text{PSU(2})_7:\ \text{FR}^{4,0}_{6}\) .
The upper central series is the following: \(\text{SU}(2)_7 \underset{ \mathbf{1}, \mathbf{3}, \mathbf{5}, \mathbf{7} }{\supset} \text{PSU(2})_7\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{2}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: