TY( Z 8 ) : FR 2 9 , 6 \left.\text{TY(}\mathbb{Z}_8\right):\ \text{FR}^{9,6}_{2} TY( Z 8 ) : FR 2 9 , 6
Fusion Rules
1 2 3 4 5 6 7 8 9 2 1 6 5 4 3 8 7 9 3 6 8 1 2 7 4 5 9 4 5 1 7 8 2 6 3 9 5 4 2 8 7 1 3 6 9 6 3 7 2 1 8 5 4 9 7 8 4 6 3 5 2 1 9 8 7 5 3 6 4 1 2 9 9 9 9 9 9 9 9 9 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 \begin{array}{|lllllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\
\mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\
\mathbf{3} & \mathbf{6} & \mathbf{8} & \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{4} & \mathbf{5} & \mathbf{9} \\
\mathbf{4} & \mathbf{5} & \mathbf{1} & \mathbf{7} & \mathbf{8} & \mathbf{2} & \mathbf{6} & \mathbf{3} & \mathbf{9} \\
\mathbf{5} & \mathbf{4} & \mathbf{2} & \mathbf{8} & \mathbf{7} & \mathbf{1} & \mathbf{3} & \mathbf{6} & \mathbf{9} \\
\mathbf{6} & \mathbf{3} & \mathbf{7} & \mathbf{2} & \mathbf{1} & \mathbf{8} & \mathbf{5} & \mathbf{4} & \mathbf{9} \\
\mathbf{7} & \mathbf{8} & \mathbf{4} & \mathbf{6} & \mathbf{3} & \mathbf{5} & \mathbf{2} & \mathbf{1} & \mathbf{9} \\
\mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{3} & \mathbf{6} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{9} \\
\mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 9 2 1 6 5 4 3 8 7 9 3 6 8 1 2 7 4 5 9 4 5 1 7 8 2 6 3 9 5 4 2 8 7 1 3 6 9 6 3 7 2 1 8 5 4 9 7 8 4 6 3 5 2 1 9 8 7 5 3 6 4 1 2 9 9 9 9 9 9 9 9 9 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
The fusion rules are invariant under the group generated by the following permutations:
{ ( 3 6 ) ( 4 5 ) , ( 3 4 ) ( 5 6 ) ( 7 8 ) } \{(\mathbf{3} \ \mathbf{6}) (\mathbf{4} \ \mathbf{5}), (\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6}) (\mathbf{7} \ \mathbf{8})\} { ( 3 6 ) ( 4 5 ) , ( 3 4 ) ( 5 6 ) ( 7 8 ) }
The following elements form non-trivial sub fusion rings
Elements
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 2 , 7 , 8 } \{\mathbf{1},\mathbf{2},\mathbf{7},\mathbf{8}\} { 1 , 2 , 7 , 8 }
Z 4 : FR 1 4 , 2 \mathbb{Z}_4:\ \text{FR}^{4,2}_{1} Z 4 : FR 1 4 , 2
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6},\mathbf{7},\mathbf{8}\} { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 }
Z 8 : FR 2 8 , 6 \mathbb{Z}_8:\ \text{FR}^{8,6}_{2} Z 8 : FR 2 8 , 6
Frobenius-Perron Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
1. 1. 1 .
1 1 1
6 \mathbf{6} 6
1. 1. 1 .
1 1 1
7 \mathbf{7} 7
1. 1. 1 .
1 1 1
8 \mathbf{8} 8
1. 1. 1 .
1 1 1
9 \mathbf{9} 9
2.82843 2.82843 2 . 8 2 8 4 3
2 2 2 \sqrt{2} 2 2
D F P 2 \mathcal{D}_{FP}^2 D F P 2
16. 16. 1 6 .
16 16 1 6
Characters
The symbolic character table is the following
1 2 6 5 7 8 4 3 9 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 − 2 2 1 1 − 1 − 1 1 1 − 1 − 1 0 1 1 i − i − 1 − 1 − i i 0 1 1 − i i − 1 − 1 i − i 0 1 − 1 Root [ x 4 + 1 , 3 ] Root [ x 4 + 1 , 4 ] i − i Root [ x 4 + 1 , 1 ] Root [ x 4 + 1 , 2 ] 0 1 − 1 Root [ x 4 + 1 , 4 ] Root [ x 4 + 1 , 3 ] − i i Root [ x 4 + 1 , 2 ] Root [ x 4 + 1 , 1 ] 0 1 − 1 Root [ x 4 + 1 , 2 ] Root [ x 4 + 1 , 1 ] i − i Root [ x 4 + 1 , 4 ] Root [ x 4 + 1 , 3 ] 0 1 − 1 Root [ x 4 + 1 , 1 ] Root [ x 4 + 1 , 2 ] − i i Root [ x 4 + 1 , 3 ] Root [ x 4 + 1 , 4 ] 0 \begin{array}{|ccccccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{4} & \mathbf{3} & \mathbf{9} \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \sqrt{2} \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -2 \sqrt{2} \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 0 \\
1 & 1 & i & -i & -1 & -1 & -i & i & 0 \\
1 & 1 & -i & i & -1 & -1 & i & -i & 0 \\
1 & -1 & \text{Root}\left[x^4+1,3\right] & \text{Root}\left[x^4+1,4\right] & i & -i & \text{Root}\left[x^4+1,1\right] & \text{Root}\left[x^4+1,2\right] & 0 \\
1 & -1 & \text{Root}\left[x^4+1,4\right] & \text{Root}\left[x^4+1,3\right] & -i & i & \text{Root}\left[x^4+1,2\right] & \text{Root}\left[x^4+1,1\right] & 0 \\
1 & -1 & \text{Root}\left[x^4+1,2\right] & \text{Root}\left[x^4+1,1\right] & i & -i & \text{Root}\left[x^4+1,4\right] & \text{Root}\left[x^4+1,3\right] & 0 \\
1 & -1 & \text{Root}\left[x^4+1,1\right] & \text{Root}\left[x^4+1,2\right] & -i & i & \text{Root}\left[x^4+1,3\right] & \text{Root}\left[x^4+1,4\right] & 0 \\
\hline
\end{array} 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 − 1 − 1 − 1 − 1 6 1 1 − 1 i − i Root [ x 4 + 1 , 3 ] Root [ x 4 + 1 , 4 ] Root [ x 4 + 1 , 2 ] Root [ x 4 + 1 , 1 ] 5 1 1 − 1 − i i Root [ x 4 + 1 , 4 ] Root [ x 4 + 1 , 3 ] Root [ x 4 + 1 , 1 ] Root [ x 4 + 1 , 2 ] 7 1 1 1 − 1 − 1 i − i i − i 8 1 1 1 − 1 − 1 − i i − i i 4 1 1 − 1 − i i Root [ x 4 + 1 , 1 ] Root [ x 4 + 1 , 2 ] Root [ x 4 + 1 , 4 ] Root [ x 4 + 1 , 3 ] 3 1 1 − 1 i − i Root [ x 4 + 1 , 2 ] Root [ x 4 + 1 , 1 ] Root [ x 4 + 1 , 3 ] Root [ x 4 + 1 , 4 ] 9 2 2 − 2 2 0 0 0 0 0 0 0
The numeric character table is the following
1 2 6 5 7 8 4 3 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.828 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 − 2.828 1.000 1.000 − 1.000 − 1.000 1.000 1.000 − 1.000 − 1.000 0 1.000 1.000 1.000 i − 1.000 i − 1.000 − 1.000 − 1.000 i 1.000 i 0 1.000 1.000 − 1.000 i 1.000 i − 1.000 − 1.000 1.000 i − 1.000 i 0 1.000 − 1.000 0.7071 − 0.7071 i 0.7071 + 0.7071 i 1.000 i − 1.000 i − 0.7071 − 0.7071 i − 0.7071 + 0.7071 i 0 1.000 − 1.000 0.7071 + 0.7071 i 0.7071 − 0.7071 i − 1.000 i 1.000 i − 0.7071 + 0.7071 i − 0.7071 − 0.7071 i 0 1.000 − 1.000 − 0.7071 + 0.7071 i − 0.7071 − 0.7071 i 1.000 i − 1.000 i 0.7071 + 0.7071 i 0.7071 − 0.7071 i 0 1.000 − 1.000 − 0.7071 − 0.7071 i − 0.7071 + 0.7071 i − 1.000 i 1.000 i 0.7071 − 0.7071 i 0.7071 + 0.7071 i 0 \begin{array}{|rrrrrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{4} & \mathbf{3} & \mathbf{9} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 2.828 \\
1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -2.828 \\
1.000 & 1.000 & -1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 0 \\
1.000 & 1.000 & 1.000 i & -1.000 i & -1.000 & -1.000 & -1.000 i & 1.000 i & 0 \\
1.000 & 1.000 & -1.000 i & 1.000 i & -1.000 & -1.000 & 1.000 i & -1.000 i & 0 \\
1.000 & -1.000 & 0.7071-0.7071 i & 0.7071+0.7071 i & 1.000 i & -1.000 i & -0.7071-0.7071 i & -0.7071+0.7071 i & 0 \\
1.000 & -1.000 & 0.7071+0.7071 i & 0.7071-0.7071 i & -1.000 i & 1.000 i & -0.7071+0.7071 i & -0.7071-0.7071 i & 0 \\
1.000 & -1.000 & -0.7071+0.7071 i & -0.7071-0.7071 i & 1.000 i & -1.000 i & 0.7071+0.7071 i & 0.7071-0.7071 i & 0 \\
1.000 & -1.000 & -0.7071-0.7071 i & -0.7071+0.7071 i & -1.000 i & 1.000 i & 0.7071-0.7071 i & 0.7071+0.7071 i & 0 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 6 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 i − 1 . 0 0 0 i 0 . 7 0 7 1 − 0 . 7 0 7 1 i 0 . 7 0 7 1 + 0 . 7 0 7 1 i − 0 . 7 0 7 1 + 0 . 7 0 7 1 i − 0 . 7 0 7 1 − 0 . 7 0 7 1 i 5 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 i 1 . 0 0 0 i 0 . 7 0 7 1 + 0 . 7 0 7 1 i 0 . 7 0 7 1 − 0 . 7 0 7 1 i − 0 . 7 0 7 1 − 0 . 7 0 7 1 i − 0 . 7 0 7 1 + 0 . 7 0 7 1 i 7 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 i − 1 . 0 0 0 i 1 . 0 0 0 i − 1 . 0 0 0 i 8 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 i 1 . 0 0 0 i − 1 . 0 0 0 i 1 . 0 0 0 i 4 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 i 1 . 0 0 0 i − 0 . 7 0 7 1 − 0 . 7 0 7 1 i − 0 . 7 0 7 1 + 0 . 7 0 7 1 i 0 . 7 0 7 1 + 0 . 7 0 7 1 i 0 . 7 0 7 1 − 0 . 7 0 7 1 i 3 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 i − 1 . 0 0 0 i − 0 . 7 0 7 1 + 0 . 7 0 7 1 i − 0 . 7 0 7 1 − 0 . 7 0 7 1 i 0 . 7 0 7 1 − 0 . 7 0 7 1 i 0 . 7 0 7 1 + 0 . 7 0 7 1 i 9 2 . 8 2 8 − 2 . 8 2 8 0 0 0 0 0 0 0
Representations of S L 2 ( Z ) SL_2(\mathbb{Z}) S L 2 ( Z )
This fusion ring does not provide any representations of S L 2 ( Z ) . SL_2(\mathbb{Z}). S L 2 ( Z ) .
Adjoint Subring
Elements 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8} 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , form the adjoint subring Z 8 : FR 2 8 , 6 \mathbb{Z}_8:\ \text{FR}^{8,6}_{2} Z 8 : FR 2 8 , 6 .
The upper central series is the following:
TY( Z 8 ) ⊃ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 Z 8 ⊃ 1 Trivial \left.\text{TY(}\mathbb{Z}_8\right) \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8} }{\supset} \mathbb{Z}_8 \underset{ \mathbf{1} }{\supset} \text{Trivial} TY( Z 8 ) 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ⊃ Z 8 1 ⊃ Trivial
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 1 ′ , deg ( 9 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{1}', \text{deg}(\mathbf{9}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 1 ′ , deg ( 9 ) = 2 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: