\(\text{FR}^{9,6}_{16}\)

Fusion Rules

\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{9} & \mathbf{7} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{9} & \mathbf{7} & \mathbf{8} \\ \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{9} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{9} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{9} & \mathbf{7} & \mathbf{8} & \mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6}) (\mathbf{8} \ \mathbf{9})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2},\mathbf{3}\}\) \(\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(4.64575\) \(2+\sqrt{7}\)
\(\mathbf{5}\) \(4.64575\) \(2+\sqrt{7}\)
\(\mathbf{6}\) \(4.64575\) \(2+\sqrt{7}\)
\(\mathbf{7}\) \(5.64575\) \(3+\sqrt{7}\)
\(\mathbf{8}\) \(5.64575\) \(3+\sqrt{7}\)
\(\mathbf{9}\) \(5.64575\) \(3+\sqrt{7}\)
\(\mathcal{D}_{FP}^2\) \(163.373\) \(3+3 \left(2+\sqrt{7}\right)^2+3 \left(3+\sqrt{7}\right)^2\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{9} & \mathbf{8} \\ \hline 1 & 1 & 1 & 2+\sqrt{7} & 2+\sqrt{7} & 2+\sqrt{7} & 3+\sqrt{7} & 3+\sqrt{7} & 3+\sqrt{7} \\ 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 2-\sqrt{7} & 2-\sqrt{7} & 2-\sqrt{7} & 3-\sqrt{7} & 3-\sqrt{7} & 3-\sqrt{7} \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 0 & 0 & 0 & 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 0 & 0 & 0 & 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & -1 & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & -1 & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & -2 & 1+i \sqrt{3} & 1-i \sqrt{3} & -1 & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & -2 & 1-i \sqrt{3} & 1+i \sqrt{3} & -1 & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{9} & \mathbf{8} \\ \hline 1.000 & 1.000 & 1.000 & 4.646 & 4.646 & 4.646 & 5.646 & 5.646 & 5.646 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 \\ 1.000 & 1.000 & 1.000 & -0.6458 & -0.6458 & -0.6458 & 0.3542 & 0.3542 & 0.3542 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0 & 0 & 0 & 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0 & 0 & 0 & 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -1.000 & 0.5000+0.8660 i & 0.5000-0.8660 i \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -1.000 & 0.5000-0.8660 i & 0.5000+0.8660 i \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -2.000 & 1.000+1.732 i & 1.000-1.732 i & -1.000 & 0.5000+0.8660 i & 0.5000-0.8660 i \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -2.000 & 1.000-1.732 i & 1.000+1.732 i & -1.000 & 0.5000-0.8660 i & 0.5000+0.8660 i \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

This fusion ring has no categorifications because of the $d$-number criterion.

Data

Download links for numeric data: