\(\text{FR}^{9,6}_{15}\)

Fusion Rules

\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{9} & \mathbf{7} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{9} & \mathbf{7} & \mathbf{8} \\ \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{8} & \mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{8} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{8} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{9} & \mathbf{7} & \mathbf{8} & \mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6}) (\mathbf{8} \ \mathbf{9})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2},\mathbf{3}\}\) \(\mathbb{Z}_3:\ \text{FR}^{3,2}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(3.69963\) \(\text{Root}\left[x^3-5 x^2+4 x+3,3\right]\)
\(\mathbf{5}\) \(3.69963\) \(\text{Root}\left[x^3-5 x^2+4 x+3,3\right]\)
\(\mathbf{6}\) \(3.69963\) \(\text{Root}\left[x^3-5 x^2+4 x+3,3\right]\)
\(\mathbf{7}\) \(5.28799\) \(\text{Root}\left[x^3-4 x^2-7 x+1,3\right]\)
\(\mathbf{8}\) \(5.28799\) \(\text{Root}\left[x^3-4 x^2-7 x+1,3\right]\)
\(\mathbf{9}\) \(5.28799\) \(\text{Root}\left[x^3-4 x^2-7 x+1,3\right]\)
\(\mathcal{D}_{FP}^2\) \(127.95\) \(3 \text{Root}\left[x^3-5 x^2+4 x+3,3\right]^2+3 \text{Root}\left[x^3-4 x^2-7 x+1,3\right]^2+3\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{9} & \mathbf{7} \\ \hline 1 & 1 & 1 & \text{Root}\left[x^3-5 x^2+4 x+3,3\right] & \text{Root}\left[x^3-5 x^2+4 x+3,3\right] & \text{Root}\left[x^3-5 x^2+4 x+3,3\right] & \text{Root}\left[x^3-4 x^2-7 x+1,3\right] & \text{Root}\left[x^3-4 x^2-7 x+1,3\right] & \text{Root}\left[x^3-4 x^2-7 x+1,3\right] \\ 1 & 1 & 1 & \text{Root}\left[x^3-5 x^2+4 x+3,2\right] & \text{Root}\left[x^3-5 x^2+4 x+3,2\right] & \text{Root}\left[x^3-5 x^2+4 x+3,2\right] & \text{Root}\left[x^3-4 x^2-7 x+1,1\right] & \text{Root}\left[x^3-4 x^2-7 x+1,1\right] & \text{Root}\left[x^3-4 x^2-7 x+1,1\right] \\ 1 & 1 & 1 & \text{Root}\left[x^3-5 x^2+4 x+3,1\right] & \text{Root}\left[x^3-5 x^2+4 x+3,1\right] & \text{Root}\left[x^3-5 x^2+4 x+3,1\right] & \text{Root}\left[x^3-4 x^2-7 x+1,2\right] & \text{Root}\left[x^3-4 x^2-7 x+1,2\right] & \text{Root}\left[x^3-4 x^2-7 x+1,2\right] \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 0 & 0 & 0 & \frac{1}{2} \left(1+i \sqrt{3}\right) & \frac{1}{2} \left(1-i \sqrt{3}\right) & -1 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 0 & 0 & 0 & \frac{1}{2} \left(1-i \sqrt{3}\right) & \frac{1}{2} \left(1+i \sqrt{3}\right) & -1 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 \\ 1 & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & -2 & 1+i \sqrt{3} & 1-i \sqrt{3} & \frac{1}{2} \left(-1+i \sqrt{3}\right) & \frac{1}{2} \left(-1-i \sqrt{3}\right) & 1 \\ 1 & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & -2 & 1-i \sqrt{3} & 1+i \sqrt{3} & \frac{1}{2} \left(-1-i \sqrt{3}\right) & \frac{1}{2} \left(-1+i \sqrt{3}\right) & 1 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{9} & \mathbf{7} \\ \hline 1.000 & 1.000 & 1.000 & 3.700 & 3.700 & 3.700 & 5.288 & 5.288 & 5.288 \\ 1.000 & 1.000 & 1.000 & 1.761 & 1.761 & 1.761 & -1.421 & -1.421 & -1.421 \\ 1.000 & 1.000 & 1.000 & -0.4605 & -0.4605 & -0.4605 & 0.1331 & 0.1331 & 0.1331 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 0 & 0 & 0 & 0.5000+0.8660 i & 0.5000-0.8660 i & -1.000 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 0 & 0 & 0 & 0.5000-0.8660 i & 0.5000+0.8660 i & -1.000 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -0.5000+0.8660 i & -0.5000-0.8660 i & 1.000 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -0.5000-0.8660 i & -0.5000+0.8660 i & 1.000 \\ 1.000 & -0.5000+0.8660 i & -0.5000-0.8660 i & -2.000 & 1.000+1.732 i & 1.000-1.732 i & -0.5000+0.8660 i & -0.5000-0.8660 i & 1.000 \\ 1.000 & -0.5000-0.8660 i & -0.5000+0.8660 i & -2.000 & 1.000-1.732 i & 1.000+1.732 i & -0.5000-0.8660 i & -0.5000+0.8660 i & 1.000 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

This fusion ring has no categorifications because of the extended cyclotomic criterion.

Data

Download links for numeric data: