\(\text{FR}^{9,4}_{33}\)

Fusion Rules

\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{9} & \mathbf{8} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{4} & \mathbf{7} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{5} & \mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{6} & \mathbf{5} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{4} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \mathbf{9} & \mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8}+\mathbf{9} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{4} \ \mathbf{7}) (\mathbf{5} \ \mathbf{6}), (\mathbf{4} \ \mathbf{5}) (\mathbf{6} \ \mathbf{7}) (\mathbf{8} \ \mathbf{9})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(5.37228\) \(\frac{1}{2} \left(5+\sqrt{33}\right)\)
\(\mathbf{4}\) \(5.37228\) \(\frac{1}{2} \left(5+\sqrt{33}\right)\)
\(\mathbf{5}\) \(5.37228\) \(\frac{1}{2} \left(5+\sqrt{33}\right)\)
\(\mathbf{6}\) \(5.37228\) \(\frac{1}{2} \left(5+\sqrt{33}\right)\)
\(\mathbf{7}\) \(5.37228\) \(\frac{1}{2} \left(5+\sqrt{33}\right)\)
\(\mathbf{8}\) \(6.37228\) \(\frac{1}{2} \left(7+\sqrt{33}\right)\)
\(\mathbf{9}\) \(6.37228\) \(\frac{1}{2} \left(7+\sqrt{33}\right)\)
\(\mathcal{D}_{FP}^2\) \(227.519\) \(2+\frac{5}{4} \left(5+\sqrt{33}\right)^2+\frac{1}{2} \left(7+\sqrt{33}\right)^2\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & \frac{1}{2} \left(5+\sqrt{33}\right) & \frac{1}{2} \left(5+\sqrt{33}\right) & \frac{1}{2} \left(5+\sqrt{33}\right) & \frac{1}{2} \left(5+\sqrt{33}\right) & \frac{1}{2} \left(5+\sqrt{33}\right) & \frac{1}{2} \left(7+\sqrt{33}\right) & \frac{1}{2} \left(7+\sqrt{33}\right) \\ 1 & 1 & 2 & 0 & 0 & 0 & 0 & -1 & -1 \\ 1 & 1 & \frac{1}{2} \left(5-\sqrt{33}\right) & \frac{1}{2} \left(5-\sqrt{33}\right) & \frac{1}{2} \left(5-\sqrt{33}\right) & \frac{1}{2} \left(5-\sqrt{33}\right) & \frac{1}{2} \left(5-\sqrt{33}\right) & \frac{1}{2} \left(7-\sqrt{33}\right) & \frac{1}{2} \left(7-\sqrt{33}\right) \\ 1 & 1 & -2 & 1+i \sqrt{3} & 1-i \sqrt{3} & 1-i \sqrt{3} & 1+i \sqrt{3} & -1 & -1 \\ 1 & 1 & -2 & 1-i \sqrt{3} & 1+i \sqrt{3} & 1+i \sqrt{3} & 1-i \sqrt{3} & -1 & -1 \\ 2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 5.372 & 5.372 & 5.372 & 5.372 & 5.372 & 6.372 & 6.372 \\ 1.000 & 1.000 & 2.000 & 0 & 0 & 0 & 0 & -1.000 & -1.000 \\ 1.000 & 1.000 & -0.3723 & -0.3723 & -0.3723 & -0.3723 & -0.3723 & 0.6277 & 0.6277 \\ 1.000 & 1.000 & -2.000 & 1.000+1.732 i & 1.000-1.732 i & 1.000-1.732 i & 1.000+1.732 i & -1.000 & -1.000 \\ 1.000 & 1.000 & -2.000 & 1.000-1.732 i & 1.000+1.732 i & 1.000+1.732 i & 1.000-1.732 i & -1.000 & -1.000 \\ 2.000 & -2.000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

Data

Download links for numeric data: