FR139,4\text{FR}^{9,4}_{13}

Fusion Rules

12345678921435769834125768943215679855551+2+3+48+98+96+76+767768+92+3+6+71+4+6+75+8+95+8+976678+91+4+6+72+3+6+75+8+95+8+989896+75+8+95+8+92+4+6+71+3+6+798986+75+8+95+8+91+3+6+72+4+6+7\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{9} & \mathbf{8} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{9} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{9} & \mathbf{8} \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\ \mathbf{6} & \mathbf{7} & \mathbf{7} & \mathbf{6} & \mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{6} & \mathbf{6} & \mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{9} & \mathbf{8} & \mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{6}+\mathbf{7} \\ \mathbf{9} & \mathbf{8} & \mathbf{9} & \mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{4}+\mathbf{6}+\mathbf{7} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(6 7),(8 9)}\{(\mathbf{6} \ \mathbf{7}), (\mathbf{8} \ \mathbf{9})\}

The following elements form non-trivial sub fusion rings

Elements SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,3}\{\mathbf{1},\mathbf{3}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,4}\{\mathbf{1},\mathbf{4}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Z2×Z2: FR14,0\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}
{1,2,3,4,5}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\} Rep(D4): FR15,0\left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1}
{1,2,3,4,6,7}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6},\mathbf{7}\} FR66,2\text{FR}^{6,2}_{6}

Frobenius-Perron Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 2.2. 22
6\mathbf{6} 2.732052.73205 1+31+\sqrt{3}
7\mathbf{7} 2.732052.73205 1+31+\sqrt{3}
8\mathbf{8} 2.732052.73205 1+31+\sqrt{3}
9\mathbf{9} 2.732052.73205 1+31+\sqrt{3}
DFP2\mathcal{D}_{FP}^2 37.856437.8564 8+4(1+3)28+4 \left(1+\sqrt{3}\right)^2

Characters

The symbolic character table is the following

123458976111121+31+31+31+3111121313131311112313113131111213131+31+311110000011110i2i20011110i2i2001111000i2i21111000i2i2\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{6} \\ \hline 1 & 1 & 1 & 1 & 2 & 1+\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} \\ 1 & 1 & 1 & 1 & 2 & 1-\sqrt{3} & 1-\sqrt{3} & 1-\sqrt{3} & 1-\sqrt{3} \\ 1 & 1 & 1 & 1 & -2 & \sqrt{3}-1 & \sqrt{3}-1 & 1-\sqrt{3} & 1-\sqrt{3} \\ 1 & 1 & 1 & 1 & -2 & -1-\sqrt{3} & -1-\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} \\ 1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 & 0 & i \sqrt{2} & -i \sqrt{2} & 0 & 0 \\ 1 & -1 & 1 & -1 & 0 & -i \sqrt{2} & i \sqrt{2} & 0 & 0 \\ 1 & -1 & -1 & 1 & 0 & 0 & 0 & i \sqrt{2} & -i \sqrt{2} \\ 1 & -1 & -1 & 1 & 0 & 0 & 0 & -i \sqrt{2} & i \sqrt{2} \\ \hline \end{array}

The numeric character table is the following

1234589761.0001.0001.0001.0002.0002.7322.7322.7322.7321.0001.0001.0001.0002.0000.73210.73210.73210.73211.0001.0001.0001.0002.0000.73210.73210.73210.73211.0001.0001.0001.0002.0002.7322.7322.7322.7321.0001.0001.0001.000000001.0001.0001.0001.00001.414i1.414i001.0001.0001.0001.00001.414i1.414i001.0001.0001.0001.0000001.414i1.414i1.0001.0001.0001.0000001.414i1.414i\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{6} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.732 & 2.732 & 2.732 & 2.732 \\ 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & -0.7321 & -0.7321 & -0.7321 & -0.7321 \\ 1.000 & 1.000 & 1.000 & 1.000 & -2.000 & 0.7321 & 0.7321 & -0.7321 & -0.7321 \\ 1.000 & 1.000 & 1.000 & 1.000 & -2.000 & -2.732 & -2.732 & 2.732 & 2.732 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 & 1.414 i & -1.414 i & 0 & 0 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 & -1.414 i & 1.414 i & 0 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 0 & 1.414 i & -1.414 i \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 0 & -1.414 i & 1.414 i \\ \hline \end{array}

Representations of SL2(Z)SL_2(\mathbb{Z})

This fusion ring does not provide any representations of SL2(Z).SL_2(\mathbb{Z}).

Adjoint Subring

Elements 1,2,3,4,6,7\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7}, form the adjoint subring FR66,2\text{FR}^{6,2}_{6} .

The upper central series is the following: FR139,41,2,3,4,6,7FR66,2\text{FR}^{9,4}_{13} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7} }{\supset} \text{FR}^{6,2}_{6}

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=1,deg(4)=1,deg(5)=2,deg(6)=1,deg(7)=1,deg(8)=2,deg(9)=2\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{2}', \text{deg}(\mathbf{9}) = \mathbf{2}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: