FR 13 9 , 4 \text{FR}^{9,4}_{13} FR 1 3 9 , 4
Fusion Rules
1 2 3 4 5 6 7 8 9 2 1 4 3 5 7 6 9 8 3 4 1 2 5 7 6 8 9 4 3 2 1 5 6 7 9 8 5 5 5 5 1 + 2 + 3 + 4 8 + 9 8 + 9 6 + 7 6 + 7 6 7 7 6 8 + 9 2 + 3 + 6 + 7 1 + 4 + 6 + 7 5 + 8 + 9 5 + 8 + 9 7 6 6 7 8 + 9 1 + 4 + 6 + 7 2 + 3 + 6 + 7 5 + 8 + 9 5 + 8 + 9 8 9 8 9 6 + 7 5 + 8 + 9 5 + 8 + 9 2 + 4 + 6 + 7 1 + 3 + 6 + 7 9 8 9 8 6 + 7 5 + 8 + 9 5 + 8 + 9 1 + 3 + 6 + 7 2 + 4 + 6 + 7 \begin{array}{|lllllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\
\mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{9} & \mathbf{8} \\
\mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{6} & \mathbf{8} & \mathbf{9} \\
\mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{9} & \mathbf{8} \\
\mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\
\mathbf{6} & \mathbf{7} & \mathbf{7} & \mathbf{6} & \mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} \\
\mathbf{7} & \mathbf{6} & \mathbf{6} & \mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} \\
\mathbf{8} & \mathbf{9} & \mathbf{8} & \mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{6}+\mathbf{7} \\
\mathbf{9} & \mathbf{8} & \mathbf{9} & \mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{4}+\mathbf{6}+\mathbf{7} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 9 2 1 4 3 5 7 6 9 8 3 4 1 2 5 7 6 8 9 4 3 2 1 5 6 7 9 8 5 5 5 5 1 + 2 + 3 + 4 8 + 9 8 + 9 6 + 7 6 + 7 6 7 7 6 8 + 9 2 + 3 + 6 + 7 1 + 4 + 6 + 7 5 + 8 + 9 5 + 8 + 9 7 6 6 7 8 + 9 1 + 4 + 6 + 7 2 + 3 + 6 + 7 5 + 8 + 9 5 + 8 + 9 8 9 8 9 6 + 7 5 + 8 + 9 5 + 8 + 9 2 + 4 + 6 + 7 1 + 3 + 6 + 7 9 8 9 8 6 + 7 5 + 8 + 9 5 + 8 + 9 1 + 3 + 6 + 7 2 + 4 + 6 + 7
The fusion rules are invariant under the group generated by the following permutations:
{ ( 6 7 ) , ( 8 9 ) } \{(\mathbf{6} \ \mathbf{7}), (\mathbf{8} \ \mathbf{9})\} { ( 6 7 ) , ( 8 9 ) }
The following elements form non-trivial sub fusion rings
Elements
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 3 } \{\mathbf{1},\mathbf{3}\} { 1 , 3 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 4 } \{\mathbf{1},\mathbf{4}\} { 1 , 4 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 2 , 3 , 4 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} { 1 , 2 , 3 , 4 }
Z 2 × Z 2 : FR 1 4 , 0 \mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1} Z 2 × Z 2 : FR 1 4 , 0
{ 1 , 2 , 3 , 4 , 5 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\} { 1 , 2 , 3 , 4 , 5 }
Rep( D 4 ) : FR 1 5 , 0 \left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1} Rep( D 4 ) : FR 1 5 , 0
{ 1 , 2 , 3 , 4 , 6 , 7 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6},\mathbf{7}\} { 1 , 2 , 3 , 4 , 6 , 7 }
FR 6 6 , 2 \text{FR}^{6,2}_{6} FR 6 6 , 2
Frobenius-Perron Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
2. 2. 2 .
2 2 2
6 \mathbf{6} 6
2.73205 2.73205 2 . 7 3 2 0 5
1 + 3 1+\sqrt{3} 1 + 3
7 \mathbf{7} 7
2.73205 2.73205 2 . 7 3 2 0 5
1 + 3 1+\sqrt{3} 1 + 3
8 \mathbf{8} 8
2.73205 2.73205 2 . 7 3 2 0 5
1 + 3 1+\sqrt{3} 1 + 3
9 \mathbf{9} 9
2.73205 2.73205 2 . 7 3 2 0 5
1 + 3 1+\sqrt{3} 1 + 3
D F P 2 \mathcal{D}_{FP}^2 D F P 2
37.8564 37.8564 3 7 . 8 5 6 4
8 + 4 ( 1 + 3 ) 2 8+4 \left(1+\sqrt{3}\right)^2 8 + 4 ( 1 + 3 ) 2
Characters
The symbolic character table is the following
1 2 3 4 5 8 9 7 6 1 1 1 1 2 1 + 3 1 + 3 1 + 3 1 + 3 1 1 1 1 2 1 − 3 1 − 3 1 − 3 1 − 3 1 1 1 1 − 2 3 − 1 3 − 1 1 − 3 1 − 3 1 1 1 1 − 2 − 1 − 3 − 1 − 3 1 + 3 1 + 3 1 1 − 1 − 1 0 0 0 0 0 1 − 1 1 − 1 0 i 2 − i 2 0 0 1 − 1 1 − 1 0 − i 2 i 2 0 0 1 − 1 − 1 1 0 0 0 i 2 − i 2 1 − 1 − 1 1 0 0 0 − i 2 i 2 \begin{array}{|ccccccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{6} \\
\hline
1 & 1 & 1 & 1 & 2 & 1+\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} \\
1 & 1 & 1 & 1 & 2 & 1-\sqrt{3} & 1-\sqrt{3} & 1-\sqrt{3} & 1-\sqrt{3} \\
1 & 1 & 1 & 1 & -2 & \sqrt{3}-1 & \sqrt{3}-1 & 1-\sqrt{3} & 1-\sqrt{3} \\
1 & 1 & 1 & 1 & -2 & -1-\sqrt{3} & -1-\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 0 & i \sqrt{2} & -i \sqrt{2} & 0 & 0 \\
1 & -1 & 1 & -1 & 0 & -i \sqrt{2} & i \sqrt{2} & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & 0 & i \sqrt{2} & -i \sqrt{2} \\
1 & -1 & -1 & 1 & 0 & 0 & 0 & -i \sqrt{2} & i \sqrt{2} \\
\hline
\end{array} 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 − 1 − 1 − 1 − 1 3 1 1 1 1 − 1 1 1 − 1 − 1 4 1 1 1 1 − 1 − 1 − 1 1 1 5 2 2 − 2 − 2 0 0 0 0 0 8 1 + 3 1 − 3 3 − 1 − 1 − 3 0 i 2 − i 2 0 0 9 1 + 3 1 − 3 3 − 1 − 1 − 3 0 − i 2 i 2 0 0 7 1 + 3 1 − 3 1 − 3 1 + 3 0 0 0 i 2 − i 2 6 1 + 3 1 − 3 1 − 3 1 + 3 0 0 0 − i 2 i 2
The numeric character table is the following
1 2 3 4 5 8 9 7 6 1.000 1.000 1.000 1.000 2.000 2.732 2.732 2.732 2.732 1.000 1.000 1.000 1.000 2.000 − 0.7321 − 0.7321 − 0.7321 − 0.7321 1.000 1.000 1.000 1.000 − 2.000 0.7321 0.7321 − 0.7321 − 0.7321 1.000 1.000 1.000 1.000 − 2.000 − 2.732 − 2.732 2.732 2.732 1.000 1.000 − 1.000 − 1.000 0 0 0 0 0 1.000 − 1.000 1.000 − 1.000 0 1.414 i − 1.414 i 0 0 1.000 − 1.000 1.000 − 1.000 0 − 1.414 i 1.414 i 0 0 1.000 − 1.000 − 1.000 1.000 0 0 0 1.414 i − 1.414 i 1.000 − 1.000 − 1.000 1.000 0 0 0 − 1.414 i 1.414 i \begin{array}{|rrrrrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{9} & \mathbf{7} & \mathbf{6} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.732 & 2.732 & 2.732 & 2.732 \\
1.000 & 1.000 & 1.000 & 1.000 & 2.000 & -0.7321 & -0.7321 & -0.7321 & -0.7321 \\
1.000 & 1.000 & 1.000 & 1.000 & -2.000 & 0.7321 & 0.7321 & -0.7321 & -0.7321 \\
1.000 & 1.000 & 1.000 & 1.000 & -2.000 & -2.732 & -2.732 & 2.732 & 2.732 \\
1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\
1.000 & -1.000 & 1.000 & -1.000 & 0 & 1.414 i & -1.414 i & 0 & 0 \\
1.000 & -1.000 & 1.000 & -1.000 & 0 & -1.414 i & 1.414 i & 0 & 0 \\
1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 0 & 1.414 i & -1.414 i \\
1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 0 & -1.414 i & 1.414 i \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 3 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 4 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 5 2 . 0 0 0 2 . 0 0 0 − 2 . 0 0 0 − 2 . 0 0 0 0 0 0 0 0 8 2 . 7 3 2 − 0 . 7 3 2 1 0 . 7 3 2 1 − 2 . 7 3 2 0 1 . 4 1 4 i − 1 . 4 1 4 i 0 0 9 2 . 7 3 2 − 0 . 7 3 2 1 0 . 7 3 2 1 − 2 . 7 3 2 0 − 1 . 4 1 4 i 1 . 4 1 4 i 0 0 7 2 . 7 3 2 − 0 . 7 3 2 1 − 0 . 7 3 2 1 2 . 7 3 2 0 0 0 1 . 4 1 4 i − 1 . 4 1 4 i 6 2 . 7 3 2 − 0 . 7 3 2 1 − 0 . 7 3 2 1 2 . 7 3 2 0 0 0 − 1 . 4 1 4 i 1 . 4 1 4 i
Representations of S L 2 ( Z ) SL_2(\mathbb{Z}) S L 2 ( Z )
This fusion ring does not provide any representations of S L 2 ( Z ) . SL_2(\mathbb{Z}). S L 2 ( Z ) .
Adjoint Subring
Elements 1 , 2 , 3 , 4 , 6 , 7 \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7} 1 , 2 , 3 , 4 , 6 , 7 , form the adjoint subring FR 6 6 , 2 \text{FR}^{6,2}_{6} FR 6 6 , 2 .
The upper central series is the following:
FR 13 9 , 4 ⊃ 1 , 2 , 3 , 4 , 6 , 7 FR 6 6 , 2 \text{FR}^{9,4}_{13} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7} }{\supset} \text{FR}^{6,2}_{6} FR 1 3 9 , 4 1 , 2 , 3 , 4 , 6 , 7 ⊃ FR 6 6 , 2
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 2 ′ , deg ( 9 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{2}', \text{deg}(\mathbf{9}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 2 ′ , deg ( 9 ) = 2 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: