\(\text{FR}^{9,2}_{30}\)
Fusion Rules
\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{5} & \mathbf{4} & \mathbf{7} & \mathbf{6} & \mathbf{9} & \mathbf{8} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{4}+\mathbf{5} & \mathbf{4}+\mathbf{5} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} \\ \mathbf{4} & \mathbf{5} & \mathbf{4}+\mathbf{5} & \mathbf{1}+\mathbf{3}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{6}+\mathbf{7} \\ \mathbf{5} & \mathbf{4} & \mathbf{4}+\mathbf{5} & \mathbf{2}+\mathbf{3}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{8} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{7} \\ \mathbf{6} & \mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{9} & \mathbf{4}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{7} & \mathbf{6} & \mathbf{6}+\mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{7} \\ \mathbf{8} & \mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{4}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{8}+\mathbf{9} \\ \mathbf{9} & \mathbf{8} & \mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{7} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{3}+\mathbf{8}+\mathbf{9} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{4} \ \mathbf{5}), (\mathbf{6} \ \mathbf{7})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{8},\mathbf{9}\}\) | \(\left.\text{Rep(}S_4\right):\ \text{FR}^{5,0}_{6}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.\) | \(2\) |
\(\mathbf{4}\) | \(2.44949\) | \(\sqrt{6}\) |
\(\mathbf{5}\) | \(2.44949\) | \(\sqrt{6}\) |
\(\mathbf{6}\) | \(2.44949\) | \(\sqrt{6}\) |
\(\mathbf{7}\) | \(2.44949\) | \(\sqrt{6}\) |
\(\mathbf{8}\) | \(3.\) | \(3\) |
\(\mathbf{9}\) | \(3.\) | \(3\) |
\(\mathcal{D}_{FP}^2\) | \(48.\) | \(48\) |
Characters
The symbolic character table is the following
\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & 2 & \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} & 3 & 3 \\ 1 & 1 & 2 & -\sqrt{2} & -\sqrt{2} & \sqrt{2} & \sqrt{2} & -1 & -1 \\ 1 & 1 & 2 & \sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} & -1 & -1 \\ 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & -\sqrt{6} & -\sqrt{6} & -\sqrt{6} & -\sqrt{6} & 3 & 3 \\ 1 & -1 & 0 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & 0 & i \sqrt{2} & -i \sqrt{2} & -1 & 1 \\ 1 & -1 & 0 & 0 & 0 & -i \sqrt{2} & i \sqrt{2} & -1 & 1 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 2.000 & 2.449 & 2.449 & 2.449 & 2.449 & 3.000 & 3.000 \\ 1.000 & 1.000 & 2.000 & -1.414 & -1.414 & 1.414 & 1.414 & -1.000 & -1.000 \\ 1.000 & 1.000 & 2.000 & 1.414 & 1.414 & -1.414 & -1.414 & -1.000 & -1.000 \\ 1.000 & 1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & 1.000 & 2.000 & -2.449 & -2.449 & -2.449 & -2.449 & 3.000 & 3.000 \\ 1.000 & -1.000 & 0 & 1.414 & -1.414 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & -1.414 & 1.414 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & 0 & 0 & 1.414 i & -1.414 i & -1.000 & 1.000 \\ 1.000 & -1.000 & 0 & 0 & 0 & -1.414 i & 1.414 i & -1.000 & 1.000 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{8}, \mathbf{9}\), form the adjoint subring \(\left.\text{Rep(}S_4\right):\ \text{FR}^{5,0}_{6}\) .
The upper central series is the following: \(\text{FR}^{9,2}_{30} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{8}, \mathbf{9} }{\supset} \left.\text{Rep(}S_4\right)\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{2}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{1}', \text{deg}(\mathbf{9}) = \mathbf{1}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
This fusion ring has no categorifications because of the zero spectrum criterion.
Data
Download links for numeric data: