FR39,2\text{FR}^{9,2}_{3}

Fusion Rules

12345678921436587934125687943216578956561+32+4997+865652+41+3997+87887992+31+45+68778991+42+35+699997+87+85+65+61+2+3+4\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{5} & \mathbf{6} & \mathbf{5} & \mathbf{6} & \mathbf{1}+\mathbf{3} & \mathbf{2}+\mathbf{4} & \mathbf{9} & \mathbf{9} & \mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{5} & \mathbf{6} & \mathbf{5} & \mathbf{2}+\mathbf{4} & \mathbf{1}+\mathbf{3} & \mathbf{9} & \mathbf{9} & \mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{9} & \mathbf{9} & \mathbf{2}+\mathbf{3} & \mathbf{1}+\mathbf{4} & \mathbf{5}+\mathbf{6} \\ \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{9} & \mathbf{1}+\mathbf{4} & \mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} \\ \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(5 6),(7 8)}\{(\mathbf{5} \ \mathbf{6}), (\mathbf{7} \ \mathbf{8})\}

The following elements form non-trivial sub fusion rings

Elements SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,3}\{\mathbf{1},\mathbf{3}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,4}\{\mathbf{1},\mathbf{4}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,3,5}\{\mathbf{1},\mathbf{3},\mathbf{5}\} Ising: FR13,0\text{Ising}:\ \text{FR}^{3,0}_{1}
{1,3,6}\{\mathbf{1},\mathbf{3},\mathbf{6}\} Ising: FR13,0\text{Ising}:\ \text{FR}^{3,0}_{1}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Z2×Z2: FR14,0\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}
{1,2,3,4,9}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{9}\} Rep(D4): FR15,0\left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1}
{1,2,3,4,7,8}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{7},\mathbf{8}\} FR36,2\text{FR}^{6,2}_{3}
{1,2,3,4,5,6}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\} \(\mathbb{Z}_2\text{×\times Ising}:\ \text{FR}^{6,0}_{1}\)

Frobenius-Perron Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 1.414211.41421 2\sqrt{2}
6\mathbf{6} 1.414211.41421 2\sqrt{2}
7\mathbf{7} 1.414211.41421 2\sqrt{2}
8\mathbf{8} 1.414211.41421 2\sqrt{2}
9\mathbf{9} 2.2. 22
DFP2\mathcal{D}_{FP}^2 16.16. 1616

Characters

The symbolic character table is the following

123456879111122222111122222111122222111122222111122000111122000111100000111100i2i20111100i2i20\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\ \hline 1 & 1 & 1 & 1 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 & 1 & \sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} & -2 \\ 1 & 1 & 1 & 1 & -\sqrt{2} & -\sqrt{2} & \sqrt{2} & \sqrt{2} & -2 \\ 1 & 1 & 1 & 1 & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & 2 \\ 1 & -1 & 1 & -1 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 & 0 & 0 & i \sqrt{2} & -i \sqrt{2} & 0 \\ 1 & -1 & -1 & 1 & 0 & 0 & -i \sqrt{2} & i \sqrt{2} & 0 \\ \hline \end{array}

The numeric character table is the following

1234568791.0001.0001.0001.0001.4141.4141.4141.4142.0001.0001.0001.0001.0001.4141.4141.4141.4142.0001.0001.0001.0001.0001.4141.4141.4141.4142.0001.0001.0001.0001.0001.4141.4141.4141.4142.0001.0001.0001.0001.0001.4141.4140001.0001.0001.0001.0001.4141.4140001.0001.0001.0001.000000001.0001.0001.0001.000001.414i1.414i01.0001.0001.0001.000001.414i1.414i0\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.414 & 1.414 & 1.414 & 1.414 & 2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.414 & 1.414 & -1.414 & -1.414 & -2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.414 & -1.414 & 1.414 & 1.414 & -2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.414 & -1.414 & -1.414 & -1.414 & 2.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & -1.414 & 1.414 & 0 & 0 & 0 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.414 & -1.414 & 0 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 1.414 i & -1.414 i & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & -1.414 i & 1.414 i & 0 \\ \hline \end{array}

Representations of SL2(Z)SL_2(\mathbb{Z})

This fusion ring does not provide any representations of SL2(Z).SL_2(\mathbb{Z}).

Adjoint Subring

Elements 1,2,3,4\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, form the adjoint subring Z2×Z2: FR14,0\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1} .

The upper central series is the following: FR39,21,2,3,4Z2×Z21Trivial\text{FR}^{9,2}_{3} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial}

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=1,deg(4)=1,deg(5)=2,deg(6)=2,deg(7)=3,deg(8)=3,deg(9)=4\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{3}', \text{deg}(\mathbf{8}) = \mathbf{3}', \text{deg}(\mathbf{9}) = \mathbf{4}', where the degrees form the group Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2 with multiplication table:

1234214334124321\begin{array}{|llll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{4}' & \mathbf{3}' \\ \mathbf{3}' & \mathbf{4}' & \mathbf{1}' & \mathbf{2}' \\ \mathbf{4}' & \mathbf{3}' & \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: