FR 3 9 , 2 \text{FR}^{9,2}_{3} FR 3 9 , 2
Fusion Rules
1 2 3 4 5 6 7 8 9 2 1 4 3 6 5 8 7 9 3 4 1 2 5 6 8 7 9 4 3 2 1 6 5 7 8 9 5 6 5 6 1 + 3 2 + 4 9 9 7 + 8 6 5 6 5 2 + 4 1 + 3 9 9 7 + 8 7 8 8 7 9 9 2 + 3 1 + 4 5 + 6 8 7 7 8 9 9 1 + 4 2 + 3 5 + 6 9 9 9 9 7 + 8 7 + 8 5 + 6 5 + 6 1 + 2 + 3 + 4 \begin{array}{|lllllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\
\mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\
\mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\
\mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\
\mathbf{5} & \mathbf{6} & \mathbf{5} & \mathbf{6} & \mathbf{1}+\mathbf{3} & \mathbf{2}+\mathbf{4} & \mathbf{9} & \mathbf{9} & \mathbf{7}+\mathbf{8} \\
\mathbf{6} & \mathbf{5} & \mathbf{6} & \mathbf{5} & \mathbf{2}+\mathbf{4} & \mathbf{1}+\mathbf{3} & \mathbf{9} & \mathbf{9} & \mathbf{7}+\mathbf{8} \\
\mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{9} & \mathbf{9} & \mathbf{2}+\mathbf{3} & \mathbf{1}+\mathbf{4} & \mathbf{5}+\mathbf{6} \\
\mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{9} & \mathbf{1}+\mathbf{4} & \mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} \\
\mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{5}+\mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 9 2 1 4 3 6 5 8 7 9 3 4 1 2 5 6 8 7 9 4 3 2 1 6 5 7 8 9 5 6 5 6 1 + 3 2 + 4 9 9 7 + 8 6 5 6 5 2 + 4 1 + 3 9 9 7 + 8 7 8 8 7 9 9 2 + 3 1 + 4 5 + 6 8 7 7 8 9 9 1 + 4 2 + 3 5 + 6 9 9 9 9 7 + 8 7 + 8 5 + 6 5 + 6 1 + 2 + 3 + 4
The fusion rules are invariant under the group generated by the following permutations:
{ ( 5 6 ) , ( 7 8 ) } \{(\mathbf{5} \ \mathbf{6}), (\mathbf{7} \ \mathbf{8})\} { ( 5 6 ) , ( 7 8 ) }
The following elements form non-trivial sub fusion rings
Elements
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 3 } \{\mathbf{1},\mathbf{3}\} { 1 , 3 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 4 } \{\mathbf{1},\mathbf{4}\} { 1 , 4 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 3 , 5 } \{\mathbf{1},\mathbf{3},\mathbf{5}\} { 1 , 3 , 5 }
Ising : FR 1 3 , 0 \text{Ising}:\ \text{FR}^{3,0}_{1} Ising : FR 1 3 , 0
{ 1 , 3 , 6 } \{\mathbf{1},\mathbf{3},\mathbf{6}\} { 1 , 3 , 6 }
Ising : FR 1 3 , 0 \text{Ising}:\ \text{FR}^{3,0}_{1} Ising : FR 1 3 , 0
{ 1 , 2 , 3 , 4 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} { 1 , 2 , 3 , 4 }
Z 2 × Z 2 : FR 1 4 , 0 \mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1} Z 2 × Z 2 : FR 1 4 , 0
{ 1 , 2 , 3 , 4 , 9 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{9}\} { 1 , 2 , 3 , 4 , 9 }
Rep( D 4 ) : FR 1 5 , 0 \left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1} Rep( D 4 ) : FR 1 5 , 0
{ 1 , 2 , 3 , 4 , 7 , 8 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{7},\mathbf{8}\} { 1 , 2 , 3 , 4 , 7 , 8 }
FR 3 6 , 2 \text{FR}^{6,2}_{3} FR 3 6 , 2
{ 1 , 2 , 3 , 4 , 5 , 6 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\} { 1 , 2 , 3 , 4 , 5 , 6 }
\(\mathbb{Z}_2\text{× \times × Ising}:\ \text{FR}^{6,0}_{1}\)
Frobenius-Perron Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
1.41421 1.41421 1 . 4 1 4 2 1
2 \sqrt{2} 2
6 \mathbf{6} 6
1.41421 1.41421 1 . 4 1 4 2 1
2 \sqrt{2} 2
7 \mathbf{7} 7
1.41421 1.41421 1 . 4 1 4 2 1
2 \sqrt{2} 2
8 \mathbf{8} 8
1.41421 1.41421 1 . 4 1 4 2 1
2 \sqrt{2} 2
9 \mathbf{9} 9
2. 2. 2 .
2 2 2
D F P 2 \mathcal{D}_{FP}^2 D F P 2
16. 16. 1 6 .
16 16 1 6
Characters
The symbolic character table is the following
1 2 3 4 5 6 8 7 9 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 − 2 − 2 − 2 1 1 1 1 − 2 − 2 2 2 − 2 1 1 1 1 − 2 − 2 − 2 − 2 2 1 − 1 1 − 1 − 2 2 0 0 0 1 − 1 1 − 1 2 − 2 0 0 0 1 1 − 1 − 1 0 0 0 0 0 1 − 1 − 1 1 0 0 i 2 − i 2 0 1 − 1 − 1 1 0 0 − i 2 i 2 0 \begin{array}{|ccccccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\
\hline
1 & 1 & 1 & 1 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & 2 \\
1 & 1 & 1 & 1 & \sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} & -2 \\
1 & 1 & 1 & 1 & -\sqrt{2} & -\sqrt{2} & \sqrt{2} & \sqrt{2} & -2 \\
1 & 1 & 1 & 1 & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & 2 \\
1 & -1 & 1 & -1 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & i \sqrt{2} & -i \sqrt{2} & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & -i \sqrt{2} & i \sqrt{2} & 0 \\
\hline
\end{array} 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 − 1 − 1 1 − 1 − 1 3 1 1 1 1 1 1 − 1 − 1 − 1 4 1 1 1 1 − 1 − 1 − 1 1 1 5 2 2 − 2 − 2 − 2 2 0 0 0 6 2 2 − 2 − 2 2 − 2 0 0 0 8 2 − 2 2 − 2 0 0 0 i 2 − i 2 7 2 − 2 2 − 2 0 0 0 − i 2 i 2 9 2 − 2 − 2 2 0 0 0 0 0
The numeric character table is the following
1 2 3 4 5 6 8 7 9 1.000 1.000 1.000 1.000 1.414 1.414 1.414 1.414 2.000 1.000 1.000 1.000 1.000 1.414 1.414 − 1.414 − 1.414 − 2.000 1.000 1.000 1.000 1.000 − 1.414 − 1.414 1.414 1.414 − 2.000 1.000 1.000 1.000 1.000 − 1.414 − 1.414 − 1.414 − 1.414 2.000 1.000 − 1.000 1.000 − 1.000 − 1.414 1.414 0 0 0 1.000 − 1.000 1.000 − 1.000 1.414 − 1.414 0 0 0 1.000 1.000 − 1.000 − 1.000 0 0 0 0 0 1.000 − 1.000 − 1.000 1.000 0 0 1.414 i − 1.414 i 0 1.000 − 1.000 − 1.000 1.000 0 0 − 1.414 i 1.414 i 0 \begin{array}{|rrrrrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{9} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 1.414 & 1.414 & 1.414 & 1.414 & 2.000 \\
1.000 & 1.000 & 1.000 & 1.000 & 1.414 & 1.414 & -1.414 & -1.414 & -2.000 \\
1.000 & 1.000 & 1.000 & 1.000 & -1.414 & -1.414 & 1.414 & 1.414 & -2.000 \\
1.000 & 1.000 & 1.000 & 1.000 & -1.414 & -1.414 & -1.414 & -1.414 & 2.000 \\
1.000 & -1.000 & 1.000 & -1.000 & -1.414 & 1.414 & 0 & 0 & 0 \\
1.000 & -1.000 & 1.000 & -1.000 & 1.414 & -1.414 & 0 & 0 & 0 \\
1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\
1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 1.414 i & -1.414 i & 0 \\
1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & -1.414 i & 1.414 i & 0 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 3 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 4 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 5 1 . 4 1 4 1 . 4 1 4 − 1 . 4 1 4 − 1 . 4 1 4 − 1 . 4 1 4 1 . 4 1 4 0 0 0 6 1 . 4 1 4 1 . 4 1 4 − 1 . 4 1 4 − 1 . 4 1 4 1 . 4 1 4 − 1 . 4 1 4 0 0 0 8 1 . 4 1 4 − 1 . 4 1 4 1 . 4 1 4 − 1 . 4 1 4 0 0 0 1 . 4 1 4 i − 1 . 4 1 4 i 7 1 . 4 1 4 − 1 . 4 1 4 1 . 4 1 4 − 1 . 4 1 4 0 0 0 − 1 . 4 1 4 i 1 . 4 1 4 i 9 2 . 0 0 0 − 2 . 0 0 0 − 2 . 0 0 0 2 . 0 0 0 0 0 0 0 0
Representations of S L 2 ( Z ) SL_2(\mathbb{Z}) S L 2 ( Z )
This fusion ring does not provide any representations of S L 2 ( Z ) . SL_2(\mathbb{Z}). S L 2 ( Z ) .
Adjoint Subring
Elements 1 , 2 , 3 , 4 \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} 1 , 2 , 3 , 4 , form the adjoint subring Z 2 × Z 2 : FR 1 4 , 0 \mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1} Z 2 × Z 2 : FR 1 4 , 0 .
The upper central series is the following:
FR 3 9 , 2 ⊃ 1 , 2 , 3 , 4 Z 2 × Z 2 ⊃ 1 Trivial \text{FR}^{9,2}_{3} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial} FR 3 9 , 2 1 , 2 , 3 , 4 ⊃ Z 2 × Z 2 1 ⊃ Trivial
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 3 ′ , deg ( 8 ) = 3 ′ , deg ( 9 ) = 4 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{3}', \text{deg}(\mathbf{8}) = \mathbf{3}', \text{deg}(\mathbf{9}) = \mathbf{4}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 3 ′ , deg ( 8 ) = 3 ′ , deg ( 9 ) = 4 ′ , where the degrees form the group Z 2 × Z 2 \mathbb{Z}_2\times \mathbb{Z}_2 Z 2 × Z 2 with multiplication table:
1 ′ 2 ′ 3 ′ 4 ′ 2 ′ 1 ′ 4 ′ 3 ′ 3 ′ 4 ′ 1 ′ 2 ′ 4 ′ 3 ′ 2 ′ 1 ′ \begin{array}{|llll|}
\hline
\mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' \\
\mathbf{2}' & \mathbf{1}' & \mathbf{4}' & \mathbf{3}' \\
\mathbf{3}' & \mathbf{4}' & \mathbf{1}' & \mathbf{2}' \\
\mathbf{4}' & \mathbf{3}' & \mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 3 ′ 4 ′ 2 ′ 1 ′ 4 ′ 3 ′ 3 ′ 4 ′ 1 ′ 2 ′ 4 ′ 3 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: