\[\text{One-half SO}(16)_2: \text{FR}^{9,0}_{7}\]
\(\text{One-half SO}(16)_2: \text{FR}^{9,0}_{7}\)
“One-half” means taking the \((0,0)\) and \((0,1)\) (equivalently, \((0,0)\) and \((1,0)\) components) of the \(\mathbb{Z}_2\times \mathbb{Z}_2\)-grading on \(\text{SO}(16)_2\)
Fusion Rules
\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{9} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{9} & \mathbf{8} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{9} & \mathbf{8} \\ \mathbf{5} & \mathbf{7} & \mathbf{7} & \mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{6} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} \\ \mathbf{6} & \mathbf{6} & \mathbf{6} & \mathbf{6} & \mathbf{5}+\mathbf{7} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{5} & \mathbf{5} & \mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{6} & \mathbf{5}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{8} & \mathbf{9} & \mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7} \\ \mathbf{9} & \mathbf{9} & \mathbf{8} & \mathbf{8} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{5} \ \mathbf{7}), (\mathbf{8} \ \mathbf{9})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{3}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{4}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) | \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6}\}\) | \(\left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6},\mathbf{7}\}\) | \(\text{FR}^{7,0}_{1}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(2.\) | \(2\) |
\(\mathbf{6}\) | \(2.\) | \(2\) |
\(\mathbf{7}\) | \(2.\) | \(2\) |
\(\mathbf{8}\) | \(2.82843\) | \(2 \sqrt{2}\) |
\(\mathbf{9}\) | \(2.82843\) | \(2 \sqrt{2}\) |
\(\mathcal{D}_{FP}^2\) | \(32.\) | \(32\) |
Characters
The symbolic character table is the following
\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \sqrt{2} & 2 \sqrt{2} \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 & -2 \sqrt{2} & -2 \sqrt{2} \\ 1 & 1 & 1 & 1 & -2 & 2 & -2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & -2 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 & 0 & -\sqrt{2} & \sqrt{2} \\ 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 & 0 & \sqrt{2} & -\sqrt{2} \\ 1 & -1 & -1 & 1 & \sqrt{2} & 0 & -\sqrt{2} & 0 & 0 \\ 1 & -1 & -1 & 1 & -\sqrt{2} & 0 & \sqrt{2} & 0 & 0 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.828 & 2.828 \\ 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & -2.828 & -2.828 \\ 1.000 & 1.000 & 1.000 & 1.000 & -2.000 & 2.000 & -2.000 & 0 & 0 \\ 1.000 & 1.000 & 1.000 & 1.000 & 0 & -2.000 & 0 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & -1.414 & 1.414 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & 1.414 & -1.414 \\ 1.000 & -1.000 & -1.000 & 1.000 & 1.414 & 0 & -1.414 & 0 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & -1.414 & 0 & 1.414 & 0 & 0 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}\), form the adjoint subring \(\text{FR}^{7,0}_{1}\) .
The upper central series is the following: \(\text{FR}^{9,0}_{7} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7} }{\supset} \text{FR}^{7,0}_{1} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6} }{\supset} \left.\text{Rep(}D_4\right) \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial}\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{2}', \text{deg}(\mathbf{9}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: