\(\text{FR}^{9,0}_{5}: \mathrm{Adj}(\mathrm{SO}(24)_2)\)
Fusion Rules
\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{9} & \mathbf{8} & \mathbf{7} & \mathbf{6} & \mathbf{5} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{9} & \mathbf{8} & \mathbf{7} & \mathbf{6} & \mathbf{5} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{5} & \mathbf{9} & \mathbf{9} & \mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{9} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{5} \\ \mathbf{6} & \mathbf{8} & \mathbf{8} & \mathbf{6} & \mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{5} & \mathbf{5}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{9} & \mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{5}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{5}+\mathbf{9} & \mathbf{6}+\mathbf{8} \\ \mathbf{8} & \mathbf{6} & \mathbf{6} & \mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{9} & \mathbf{5}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5} & \mathbf{6}+\mathbf{7} \\ \mathbf{9} & \mathbf{5} & \mathbf{5} & \mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{9} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{2} \ \mathbf{3}), (\mathbf{6} \ \mathbf{8})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{3}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{4}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{4},\mathbf{9}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) | \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{7}\}\) | \(\left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{9}\}\) | \(\left.\mathbb{Z}_2\text{$\times $Rep(}D_3\right):\ \text{FR}^{6,0}_{2}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(2.\) | \(2\) |
\(\mathbf{6}\) | \(2.\) | \(2\) |
\(\mathbf{7}\) | \(2.\) | \(2\) |
\(\mathbf{8}\) | \(2.\) | \(2\) |
\(\mathbf{9}\) | \(2.\) | \(2\) |
\(\mathcal{D}_{FP}^2\) | \(24.\) | \(24\) |
Characters
The symbolic character table is the following
\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & -1 & 1 & -2 & 1 & -1 \\ 1 & 1 & 1 & 1 & 2 & -2 & -2 & -2 & 2 \\ 1 & 1 & 1 & 1 & -1 & -1 & 2 & -1 & -1 \\ 1 & -1 & 1 & -1 & 1 & \sqrt{3} & 0 & -\sqrt{3} & -1 \\ 1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 & -2 & 0 & 0 & 0 & 2 \\ 1 & -1 & 1 & -1 & 1 & -\sqrt{3} & 0 & \sqrt{3} & -1 \\ 1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & 1.000 & -2.000 & 1.000 & -1.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & -2.000 & -2.000 & -2.000 & 2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 2.000 & -1.000 & -1.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & 1.732 & 0 & -1.732 & -1.000 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\ 1.000 & -1.000 & 1.000 & -1.000 & -2.000 & 0 & 0 & 0 & 2.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.732 & 0 & 1.732 & -1.000 \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{9}\), form the adjoint subring \(\left.\mathbb{Z}_2\text{$\times $Rep(}D_3\right):\ \text{FR}^{6,0}_{2}\) .
The upper central series is the following: \(\text{FR}^{9,0}_{5} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{9} }{\supset} \left.\mathbb{Z}_2\text{$\times $Rep(}D_3\right) \underset{ \mathbf{1}, \mathbf{4}, \mathbf{6} }{\supset} \left.\text{Rep(}D_3\right)\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}', \text{deg}(\mathbf{9}) = \mathbf{1}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: