\(\text{FR}^{9,0}_{30}\)
Fusion Rules
\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{9} & \mathbf{8} \\ \mathbf{3} & \mathbf{4} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{4}+\mathbf{9} & \mathbf{3}+\mathbf{8} & \mathbf{8}+\mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8} \\ \mathbf{4} & \mathbf{3} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{8} & \mathbf{4}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{7}+\mathbf{9} \\ \mathbf{5} & \mathbf{6} & \mathbf{4}+\mathbf{9} & \mathbf{3}+\mathbf{8} & \mathbf{1}+\mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{5}+\mathbf{7} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{4}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{8}+\mathbf{9} \\ \mathbf{6} & \mathbf{5} & \mathbf{3}+\mathbf{8} & \mathbf{4}+\mathbf{9} & \mathbf{2}+\mathbf{5}+\mathbf{7} & \mathbf{1}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{8}+\mathbf{9} \\ \mathbf{7} & \mathbf{7} & \mathbf{8}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{4}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{8}+\mathbf{9} \\ \mathbf{8} & \mathbf{9} & \mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} \\ \mathbf{9} & \mathbf{8} & \mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{3}+\mathbf{8}+\mathbf{9} & \mathbf{4}+\mathbf{8}+\mathbf{9} & \mathbf{3}+\mathbf{4}+\mathbf{8}+\mathbf{9} & \mathbf{2}+\mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{9} & \mathbf{1}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \hline \end{array}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{5},\mathbf{6},\mathbf{7}\}\) | \(\text{PSU(2})_8:\ \text{FR}^{5,0}_{7}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.46673\) | \(\frac{1}{2} \left(1+\sqrt{11+2 \sqrt{5}}\right)\) |
\(\mathbf{4}\) | \(2.46673\) | \(\frac{1}{2} \left(1+\sqrt{11+2 \sqrt{5}}\right)\) |
\(\mathbf{5}\) | \(2.61803\) | \(\frac{1}{2} \left(3+\sqrt{5}\right)\) |
\(\mathbf{6}\) | \(2.61803\) | \(\frac{1}{2} \left(3+\sqrt{5}\right)\) |
\(\mathbf{7}\) | \(3.23607\) | \(1+\sqrt{5}\) |
\(\mathbf{8}\) | \(3.99126\) | \(\text{Root}\left[x^4-x^3-11 x^2-5 x+5,4\right]\) |
\(\mathbf{9}\) | \(3.99126\) | \(\text{Root}\left[x^4-x^3-11 x^2-5 x+5,4\right]\) |
\(\mathcal{D}_{FP}^2\) | \(70.2101\) | \(2 \text{Root}\left[x^4-x^3-11 x^2-5 x+5,4\right]^2+2+\left(1+\sqrt{5}\right)^2+\frac{1}{2} \left(3+\sqrt{5}\right)^2+\frac{1}{2} \left(1+\sqrt{11+2 \sqrt{5}}\right)^2\) |
Characters
The symbolic character table is the following
\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,4\right] & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,4\right] & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & 1+\sqrt{5} & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,4\right] & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,4\right] \\ 1 & 1 & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,3\right] & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,3\right] & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & 1-\sqrt{5} & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,2\right] & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,2\right] \\ 1 & 1 & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,1\right] & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,1\right] & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & 1+\sqrt{5} & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,1\right] & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,1\right] \\ 1 & 1 & 0 & 0 & -1 & -1 & 1 & 0 & 0 \\ 1 & 1 & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,2\right] & \text{Root}\left[x^4-2 x^3-4 x^2+5 x+5,2\right] & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & 1-\sqrt{5} & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,3\right] & \text{Root}\left[x^4-x^3-11 x^2-5 x+5,3\right] \\ 1 & -1 & \text{Root}\left[x^4+2 x^3-2 x^2-3 x+1,4\right] & \text{Root}\left[x^4-2 x^3-2 x^2+3 x+1,1\right] & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & \text{Root}\left[x^4-x^3-3 x^2+x+1,3\right] & \text{Root}\left[x^4+x^3-3 x^2-x+1,2\right] \\ 1 & -1 & \text{Root}\left[x^4+2 x^3-2 x^2-3 x+1,3\right] & \text{Root}\left[x^4-2 x^3-2 x^2+3 x+1,2\right] & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & 0 & \text{Root}\left[x^4-x^3-3 x^2+x+1,2\right] & \text{Root}\left[x^4+x^3-3 x^2-x+1,3\right] \\ 1 & -1 & \text{Root}\left[x^4+2 x^3-2 x^2-3 x+1,2\right] & \text{Root}\left[x^4-2 x^3-2 x^2+3 x+1,3\right] & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & 0 & \text{Root}\left[x^4-x^3-3 x^2+x+1,4\right] & \text{Root}\left[x^4+x^3-3 x^2-x+1,1\right] \\ 1 & -1 & \text{Root}\left[x^4+2 x^3-2 x^2-3 x+1,1\right] & \text{Root}\left[x^4-2 x^3-2 x^2+3 x+1,4\right] & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & \text{Root}\left[x^4-x^3-3 x^2+x+1,1\right] & \text{Root}\left[x^4+x^3-3 x^2-x+1,4\right] \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 2.467 & 2.467 & 2.618 & 2.618 & 3.236 & 3.991 & 3.991 \\ 1.000 & 1.000 & 1.777 & 1.777 & 0.3820 & 0.3820 & -1.236 & -1.099 & -1.099 \\ 1.000 & 1.000 & -1.467 & -1.467 & 2.618 & 2.618 & 3.236 & -2.373 & -2.373 \\ 1.000 & 1.000 & 0 & 0 & -1.000 & -1.000 & 1.000 & 0 & 0 \\ 1.000 & 1.000 & -0.7775 & -0.7775 & 0.3820 & 0.3820 & -1.236 & 0.4805 & 0.4805 \\ 1.000 & -1.000 & 1.194 & -1.194 & -1.618 & 1.618 & 0 & 0.7376 & -0.7376 \\ 1.000 & -1.000 & 0.2950 & -0.2950 & 0.6180 & -0.6180 & 0 & -0.4773 & 0.4773 \\ 1.000 & -1.000 & -1.295 & 1.295 & 0.6180 & -0.6180 & 0 & 2.095 & -2.095 \\ 1.000 & -1.000 & -2.194 & 2.194 & -1.618 & 1.618 & 0 & -1.356 & 1.356 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
This fusion ring has no categorifications because of the extended cyclotomic criterion.
Data
Download links for numeric data: