\(\text{FR}^{9,0}_{12}: \mathrm{Adj}(\mathrm{SO}(15)_2)\)
Fusion Rules
\[\begin{array}{|lllllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{9} & \mathbf{8}+\mathbf{9} & \mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{4} \\ \mathbf{4} & \mathbf{4} & \mathbf{8}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{7} & \mathbf{6}+\mathbf{9} & \mathbf{5}+\mathbf{8} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{6} & \mathbf{3}+\mathbf{5} \\ \mathbf{5} & \mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{5} & \mathbf{4}+\mathbf{9} & \mathbf{3}+\mathbf{8} & \mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{6} \\ \mathbf{6} & \mathbf{6} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8} & \mathbf{4}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{3}+\mathbf{9} & \mathbf{4}+\mathbf{8} & \mathbf{5}+\mathbf{7} \\ \mathbf{7} & \mathbf{7} & \mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{8} & \mathbf{3}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{5}+\mathbf{9} & \mathbf{6}+\mathbf{8} \\ \mathbf{8} & \mathbf{8} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{6} & \mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{8} & \mathbf{5}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{6} & \mathbf{7}+\mathbf{9} \\ \mathbf{9} & \mathbf{9} & \mathbf{3}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{7}+\mathbf{9} & \mathbf{1}+\mathbf{2}+\mathbf{8} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{8}) (\mathbf{6} \ \mathbf{9}), (\mathbf{3} \ \mathbf{6} \ \mathbf{8} \ \mathbf{9}) (\mathbf{4} \ \mathbf{7})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{5}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{4},\mathbf{7}\}\) | \(\left.\text{Rep(}D_5\right):\ \text{FR}^{4,0}_{3}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.\) | \(2\) |
\(\mathbf{4}\) | \(2.\) | \(2\) |
\(\mathbf{5}\) | \(2.\) | \(2\) |
\(\mathbf{6}\) | \(2.\) | \(2\) |
\(\mathbf{7}\) | \(2.\) | \(2\) |
\(\mathbf{8}\) | \(2.\) | \(2\) |
\(\mathbf{9}\) | \(2.\) | \(2\) |
\(\mathcal{D}_{FP}^2\) | \(30.\) | \(30\) |
Characters
The symbolic character table is the following
\[\begin{array}{|ccccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & 2 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) \\ 1 & 1 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & 2 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & 1 & -1 & 2 & -1 & -1 & 2 & -1 & -1 \\ 1 & 1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,2\right] & \frac{1}{2} \left(\sqrt{5}-1\right) & -1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,3\right] & \frac{1}{2} \left(-1-\sqrt{5}\right) & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,4\right] & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,1\right] \\ 1 & 1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,4\right] & \frac{1}{2} \left(\sqrt{5}-1\right) & -1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,1\right] & \frac{1}{2} \left(-1-\sqrt{5}\right) & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,2\right] & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,3\right] \\ 1 & 1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,3\right] & \frac{1}{2} \left(-1-\sqrt{5}\right) & -1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,4\right] & \frac{1}{2} \left(\sqrt{5}-1\right) & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,1\right] & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,2\right] \\ 1 & 1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,1\right] & \frac{1}{2} \left(-1-\sqrt{5}\right) & -1 & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,2\right] & \frac{1}{2} \left(\sqrt{5}-1\right) & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,3\right] & \text{Root}\left[x^4-x^3-4 x^2+4 x+1,4\right] \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 \\ 1.000 & 1.000 & -1.618 & 0.6180 & 2.000 & 0.6180 & -1.618 & -1.618 & 0.6180 \\ 1.000 & 1.000 & 0.6180 & -1.618 & 2.000 & -1.618 & 0.6180 & 0.6180 & -1.618 \\ 1.000 & 1.000 & -1.000 & 2.000 & -1.000 & -1.000 & 2.000 & -1.000 & -1.000 \\ 1.000 & 1.000 & -0.2091 & 0.6180 & -1.000 & 1.338 & -1.618 & 1.827 & -1.956 \\ 1.000 & 1.000 & 1.827 & 0.6180 & -1.000 & -1.956 & -1.618 & -0.2091 & 1.338 \\ 1.000 & 1.000 & 1.338 & -1.618 & -1.000 & 1.827 & 0.6180 & -1.956 & -0.2091 \\ 1.000 & 1.000 & -1.956 & -1.618 & -1.000 & -0.2091 & 0.6180 & 1.338 & 1.827 \\ 1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
Data
Download links for numeric data: