\(\text{Fib} \times \mathbb{Z}_4:\ \text{FR}^{8,4}_{7}\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} \\ \mathbf{4} & \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} \\ \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{1}+\mathbf{6} & \mathbf{2}+\mathbf{5} & \mathbf{3}+\mathbf{8} & \mathbf{4}+\mathbf{7} \\ \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{2}+\mathbf{5} & \mathbf{1}+\mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{8} \\ \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} & \mathbf{3}+\mathbf{8} & \mathbf{4}+\mathbf{7} & \mathbf{2}+\mathbf{5} & \mathbf{1}+\mathbf{6} \\ \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{8} & \mathbf{1}+\mathbf{6} & \mathbf{2}+\mathbf{5} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{4}) (\mathbf{7} \ \mathbf{8})\}\]The following elements form non-trivial sub fusion rings
Elements | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{6}\}\) | \(\text{Fib}:\ \text{FR}^{2,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) | \(\mathbb{Z}_4:\ \text{FR}^{4,2}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{5},\mathbf{6}\}\) | \(\text{SU}(2)_3:\ \text{FR}^{4,0}_{2}\) |
Frobenius-Perron Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathbf{6}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathbf{7}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathbf{8}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathcal{D}_{FP}^2\) | \(14.4721\) | \(4+\left(1+\sqrt{5}\right)^2\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \hline 1 & -1 & -i & i & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & i \sqrt{\frac{1}{2} \left(3+\sqrt{5}\right)} & -i \sqrt{\frac{1}{2} \left(3+\sqrt{5}\right)} \\ 1 & -1 & i & -i & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & -i \sqrt{\frac{1}{2} \left(3+\sqrt{5}\right)} & i \sqrt{\frac{1}{2} \left(3+\sqrt{5}\right)} \\ 1 & -1 & -i & i & \frac{1}{2} \left(-1+\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & -i \sqrt{\frac{1}{2} \left(3-\sqrt{5}\right)} & i \sqrt{\frac{1}{2} \left(3-\sqrt{5}\right)} \\ 1 & -1 & i & -i & \frac{1}{2} \left(-1+\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & i \sqrt{\frac{1}{2} \left(3-\sqrt{5}\right)} & -i \sqrt{\frac{1}{2} \left(3-\sqrt{5}\right)} \\ 1 & 1 & -1 & -1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(-1+\sqrt{5}\right) & \frac{1}{2} \left(-1+\sqrt{5}\right) \\ 1 & 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) \\ 1 & 1 & -1 & -1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \hline 1. & -1. & -1. i & 1. i & -1.61803 & 1.61803 & 1.61803 i & -1.61803 i \\ 1. & -1. & 1. i & -1. i & -1.61803 & 1.61803 & -1.61803 i & 1.61803 i \\ 1. & -1. & -1. i & 1. i & 0.618034 & -0.618034 & -0.618034 i & 0.618034 i \\ 1. & -1. & 1. i & -1. i & 0.618034 & -0.618034 & 0.618034 i & -0.618034 i \\ 1. & 1. & -1. & -1. & -0.618034 & -0.618034 & 0.618034 & 0.618034 \\ 1. & 1. & 1. & 1. & -0.618034 & -0.618034 & -0.618034 & -0.618034 \\ 1. & 1. & -1. & -1. & 1.61803 & 1.61803 & -1.61803 & -1.61803 \\ 1. & 1. & 1. & 1. & 1.61803 & 1.61803 & 1.61803 & 1.61803 \\ \hline \end{array}\]Representations of $SL_2(\mathbb{Z})$
This fusion ring does not provide any representations of $SL_2(\mathbb{Z}).$
Adjoint Subring
Elements \(\mathbf{1}, \mathbf{6}\), form the adjoint subring \(\text{Fib}:\ \text{FR}^{2,0}_{2}\) .
The upper central series is the following: \(\text{Fib}\times \mathbb{Z}_4 \underset{ \mathbf{1}, \mathbf{6} }{\supset} \text{Fib}\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{4}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{4}', \text{deg}(\mathbf{8}) = \mathbf{3}'\), where the degrees form the group \(\mathbb{Z}_4\) with multiplication table:
\[\begin{array}{|llll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{4}' & \mathbf{3}' \\ \mathbf{3}' & \mathbf{4}' & \mathbf{2}' & \mathbf{1}' \\ \mathbf{4}' & \mathbf{3}' & \mathbf{1}' & \mathbf{2}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: