\(\left.\mathbb{Z}_2\text{$\times $(Peudo }\text{PSU}(2)_6\right):\ \text{FR}^{8,4}_{13}\)

Fusion Rules

\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} & \mathbf{6} & \mathbf{5} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{8} & \mathbf{5} & \mathbf{6} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{5} & \mathbf{1}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{5}+\mathbf{6} \\ \mathbf{8} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{3}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6}), (\mathbf{2} \ \mathbf{3}) (\mathbf{7} \ \mathbf{8})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{3}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{4}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{4},\mathbf{5},\mathbf{6}\}\) \(\text{Pseudo PSU(2})_6:\ \text{FR}^{4,2}_{4}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(2.41421\) \(1+\sqrt{2}\)
\(\mathbf{6}\) \(2.41421\) \(1+\sqrt{2}\)
\(\mathbf{7}\) \(2.41421\) \(1+\sqrt{2}\)
\(\mathbf{8}\) \(2.41421\) \(1+\sqrt{2}\)
\(\mathcal{D}_{FP}^2\) \(27.3137\) \(4+4 \left(1+\sqrt{2}\right)^2\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{6} & \mathbf{3} & \mathbf{8} & \mathbf{4} & \mathbf{5} \\ \hline 1 & 1 & 1 & 1 & 1+\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} \\ 1 & 1 & 1 & 1 & 1-\sqrt{2} & 1-\sqrt{2} & 1-\sqrt{2} & 1-\sqrt{2} \\ 1 & 1 & -1 & -1 & 1-\sqrt{2} & \sqrt{2}-1 & \sqrt{2}-1 & 1-\sqrt{2} \\ 1 & 1 & -1 & -1 & 1+\sqrt{2} & -1-\sqrt{2} & -1-\sqrt{2} & 1+\sqrt{2} \\ 1 & -1 & 1 & -1 & i & -i & i & -i \\ 1 & -1 & -1 & 1 & i & i & -i & -i \\ 1 & -1 & 1 & -1 & -i & i & -i & i \\ 1 & -1 & -1 & 1 & -i & -i & i & i \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{6} & \mathbf{3} & \mathbf{8} & \mathbf{4} & \mathbf{5} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.414 & 2.414 & 2.414 & 2.414 \\ 1.000 & 1.000 & 1.000 & 1.000 & -0.4142 & -0.4142 & -0.4142 & -0.4142 \\ 1.000 & 1.000 & -1.000 & -1.000 & -0.4142 & 0.4142 & 0.4142 & -0.4142 \\ 1.000 & 1.000 & -1.000 & -1.000 & 2.414 & -2.414 & -2.414 & 2.414 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 i & -1.000 i & 1.000 i & -1.000 i \\ 1.000 & -1.000 & -1.000 & 1.000 & 1.000 i & 1.000 i & -1.000 i & -1.000 i \\ 1.000 & -1.000 & 1.000 & -1.000 & -1.000 i & 1.000 i & -1.000 i & 1.000 i \\ 1.000 & -1.000 & -1.000 & 1.000 & -1.000 i & -1.000 i & 1.000 i & 1.000 i \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{6}\), form the adjoint subring \(\text{Pseudo PSU(2})_6:\ \text{FR}^{4,2}_{4}\) .

The upper central series is the following: \(\left.\mathbb{Z}_2\text{$\times $(Peudo }\text{PSU}(2)_6\right) \underset{ \mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{6} }{\supset} \text{Pseudo PSU(2})_6\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{2}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: