FR118,4\text{FR}^{8,4}_{11}

Fusion Rules

1234567821436587342178654312875656781+7+82+7+83+5+64+5+665872+7+81+7+84+5+63+5+678653+5+64+5+62+7+81+7+887564+5+63+5+61+7+82+7+8\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} \\ \mathbf{4} & \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} \\ \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{1}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{5}+\mathbf{6} \\ \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} & \mathbf{3}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{7}+\mathbf{8} \\ \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(3 4)(5 6),(3 4)(7 8)}\{(\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6}), (\mathbf{3} \ \mathbf{4}) (\mathbf{7} \ \mathbf{8})\}

The following particles form non-trivial sub fusion rings

Particles SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Z4: FR14,2\mathbb{Z}_4:\ \text{FR}^{4,2}_{1}
{1,2,7,8}\{\mathbf{1},\mathbf{2},\mathbf{7},\mathbf{8}\} Pseudo PSU(2)6: FR44,2\text{Pseudo PSU(2})_6:\ \text{FR}^{4,2}_{4}

Quantum Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 2.414212.41421 1+21+\sqrt{2}
6\mathbf{6} 2.414212.41421 1+21+\sqrt{2}
7\mathbf{7} 2.414212.41421 1+21+\sqrt{2}
8\mathbf{8} 2.414212.41421 1+21+\sqrt{2}
DFP2\mathcal{D}_{FP}^2 27.313727.3137 4+4(1+2)24+4 \left(1+\sqrt{2}\right)^2

Characters

The symbolic character table is the following

1243578611111+21+21+21+21111121212121111121+21+21211112112122111ii1ii111ii1ii111ii1ii111ii1ii1\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{6} \\ \hline 1 & 1 & 1 & 1 & 1+\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} \\ 1 & 1 & 1 & 1 & 1-\sqrt{2} & 1-\sqrt{2} & 1-\sqrt{2} & 1-\sqrt{2} \\ 1 & 1 & -1 & -1 & -1-\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} & -1-\sqrt{2} \\ 1 & 1 & -1 & -1 & \sqrt{2}-1 & 1-\sqrt{2} & 1-\sqrt{2} & \sqrt{2}-1 \\ 1 & -1 & -i & i & 1 & i & -i & -1 \\ 1 & -1 & i & -i & 1 & -i & i & -1 \\ 1 & -1 & i & -i & -1 & i & -i & 1 \\ 1 & -1 & -i & i & -1 & -i & i & 1 \\ \hline \end{array}

The numeric character table is the following

124357861.0001.0001.0001.0002.4142.4142.4142.4141.0001.0001.0001.0000.41420.41420.41420.41421.0001.0001.0001.0002.4142.4142.4142.4141.0001.0001.0001.0000.41420.41420.41420.41421.0001.0001.000i1.000i1.0001.000i1.000i1.0001.0001.0001.000i1.000i1.0001.000i1.000i1.0001.0001.0001.000i1.000i1.0001.000i1.000i1.0001.0001.0001.000i1.000i1.0001.000i1.000i1.000\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{6} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.414 & 2.414 & 2.414 & 2.414 \\ 1.000 & 1.000 & 1.000 & 1.000 & -0.4142 & -0.4142 & -0.4142 & -0.4142 \\ 1.000 & 1.000 & -1.000 & -1.000 & -2.414 & 2.414 & 2.414 & -2.414 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0.4142 & -0.4142 & -0.4142 & 0.4142 \\ 1.000 & -1.000 & -1.000 i & 1.000 i & 1.000 & 1.000 i & -1.000 i & -1.000 \\ 1.000 & -1.000 & 1.000 i & -1.000 i & 1.000 & -1.000 i & 1.000 i & -1.000 \\ 1.000 & -1.000 & 1.000 i & -1.000 i & -1.000 & 1.000 i & -1.000 i & 1.000 \\ 1.000 & -1.000 & -1.000 i & 1.000 i & -1.000 & -1.000 i & 1.000 i & 1.000 \\ \hline \end{array}

Modular Data

This fusion ring does not have any matching SS-and TT-matrices.

Adjoint Subring

Particles 1,2,7,8\mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{8}, form the adjoint subring Pseudo PSU(2)6: FR44,2\text{Pseudo PSU(2})_6:\ \text{FR}^{4,2}_{4} .

The upper central series is the following: FR118,41,2,7,8Pseudo PSU(2)6\text{FR}^{8,4}_{11} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{8} }{\supset} \text{Pseudo PSU(2})_6

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=2,deg(4)=2,deg(5)=2,deg(6)=2,deg(7)=1,deg(8)=1\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{2}', \text{deg}(\mathbf{4}) = \mathbf{2}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{1}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: