FR 11 8 , 4 \text{FR}^{8,4}_{11} FR 1 1 8 , 4
Fusion Rules
1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7 3 4 2 1 7 8 6 5 4 3 1 2 8 7 5 6 5 6 7 8 1 + 7 + 8 2 + 7 + 8 3 + 5 + 6 4 + 5 + 6 6 5 8 7 2 + 7 + 8 1 + 7 + 8 4 + 5 + 6 3 + 5 + 6 7 8 6 5 3 + 5 + 6 4 + 5 + 6 2 + 7 + 8 1 + 7 + 8 8 7 5 6 4 + 5 + 6 3 + 5 + 6 1 + 7 + 8 2 + 7 + 8 \begin{array}{|llllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\
\mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\
\mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{1} & \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} \\
\mathbf{4} & \mathbf{3} & \mathbf{1} & \mathbf{2} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} \\
\mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{1}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} \\
\mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{5}+\mathbf{6} \\
\mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{5} & \mathbf{3}+\mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{7}+\mathbf{8} \\
\mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{7}+\mathbf{8} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7 3 4 2 1 7 8 6 5 4 3 1 2 8 7 5 6 5 6 7 8 1 + 7 + 8 2 + 7 + 8 3 + 5 + 6 4 + 5 + 6 6 5 8 7 2 + 7 + 8 1 + 7 + 8 4 + 5 + 6 3 + 5 + 6 7 8 6 5 3 + 5 + 6 4 + 5 + 6 2 + 7 + 8 1 + 7 + 8 8 7 5 6 4 + 5 + 6 3 + 5 + 6 1 + 7 + 8 2 + 7 + 8
The fusion rules are invariant under the group generated by the following permutations:
{ ( 3 4 ) ( 5 6 ) , ( 3 4 ) ( 7 8 ) } \{(\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6}), (\mathbf{3} \ \mathbf{4}) (\mathbf{7} \ \mathbf{8})\} { ( 3 4 ) ( 5 6 ) , ( 3 4 ) ( 7 8 ) }
The following particles form non-trivial sub fusion rings
Particles
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 2 , 3 , 4 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} { 1 , 2 , 3 , 4 }
Z 4 : FR 1 4 , 2 \mathbb{Z}_4:\ \text{FR}^{4,2}_{1} Z 4 : FR 1 4 , 2
{ 1 , 2 , 7 , 8 } \{\mathbf{1},\mathbf{2},\mathbf{7},\mathbf{8}\} { 1 , 2 , 7 , 8 }
Pseudo PSU(2 ) 6 : FR 4 4 , 2 \text{Pseudo PSU(2})_6:\ \text{FR}^{4,2}_{4} Pseudo PSU(2 ) 6 : FR 4 4 , 2
Quantum Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
2.41421 2.41421 2 . 4 1 4 2 1
1 + 2 1+\sqrt{2} 1 + 2
6 \mathbf{6} 6
2.41421 2.41421 2 . 4 1 4 2 1
1 + 2 1+\sqrt{2} 1 + 2
7 \mathbf{7} 7
2.41421 2.41421 2 . 4 1 4 2 1
1 + 2 1+\sqrt{2} 1 + 2
8 \mathbf{8} 8
2.41421 2.41421 2 . 4 1 4 2 1
1 + 2 1+\sqrt{2} 1 + 2
D F P 2 \mathcal{D}_{FP}^2 D F P 2
27.3137 27.3137 2 7 . 3 1 3 7
4 + 4 ( 1 + 2 ) 2 4+4 \left(1+\sqrt{2}\right)^2 4 + 4 ( 1 + 2 ) 2
Characters
The symbolic character table is the following
1 2 4 3 5 7 8 6 1 1 1 1 1 + 2 1 + 2 1 + 2 1 + 2 1 1 1 1 1 − 2 1 − 2 1 − 2 1 − 2 1 1 − 1 − 1 − 1 − 2 1 + 2 1 + 2 − 1 − 2 1 1 − 1 − 1 2 − 1 1 − 2 1 − 2 2 − 1 1 − 1 − i i 1 i − i − 1 1 − 1 i − i 1 − i i − 1 1 − 1 i − i − 1 i − i 1 1 − 1 − i i − 1 − i i 1 \begin{array}{|cccccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{6} \\
\hline
1 & 1 & 1 & 1 & 1+\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} \\
1 & 1 & 1 & 1 & 1-\sqrt{2} & 1-\sqrt{2} & 1-\sqrt{2} & 1-\sqrt{2} \\
1 & 1 & -1 & -1 & -1-\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} & -1-\sqrt{2} \\
1 & 1 & -1 & -1 & \sqrt{2}-1 & 1-\sqrt{2} & 1-\sqrt{2} & \sqrt{2}-1 \\
1 & -1 & -i & i & 1 & i & -i & -1 \\
1 & -1 & i & -i & 1 & -i & i & -1 \\
1 & -1 & i & -i & -1 & i & -i & 1 \\
1 & -1 & -i & i & -1 & -i & i & 1 \\
\hline
\end{array} 1 1 1 1 1 1 1 1 1 2 1 1 1 1 − 1 − 1 − 1 − 1 4 1 1 − 1 − 1 − i i i − i 3 1 1 − 1 − 1 i − i − i i 5 1 + 2 1 − 2 − 1 − 2 2 − 1 1 1 − 1 − 1 7 1 + 2 1 − 2 1 + 2 1 − 2 i − i i − i 8 1 + 2 1 − 2 1 + 2 1 − 2 − i i − i i 6 1 + 2 1 − 2 − 1 − 2 2 − 1 − 1 − 1 1 1
The numeric character table is the following
1 2 4 3 5 7 8 6 1.000 1.000 1.000 1.000 2.414 2.414 2.414 2.414 1.000 1.000 1.000 1.000 − 0.4142 − 0.4142 − 0.4142 − 0.4142 1.000 1.000 − 1.000 − 1.000 − 2.414 2.414 2.414 − 2.414 1.000 1.000 − 1.000 − 1.000 0.4142 − 0.4142 − 0.4142 0.4142 1.000 − 1.000 − 1.000 i 1.000 i 1.000 1.000 i − 1.000 i − 1.000 1.000 − 1.000 1.000 i − 1.000 i 1.000 − 1.000 i 1.000 i − 1.000 1.000 − 1.000 1.000 i − 1.000 i − 1.000 1.000 i − 1.000 i 1.000 1.000 − 1.000 − 1.000 i 1.000 i − 1.000 − 1.000 i 1.000 i 1.000 \begin{array}{|rrrrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{6} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 2.414 & 2.414 & 2.414 & 2.414 \\
1.000 & 1.000 & 1.000 & 1.000 & -0.4142 & -0.4142 & -0.4142 & -0.4142 \\
1.000 & 1.000 & -1.000 & -1.000 & -2.414 & 2.414 & 2.414 & -2.414 \\
1.000 & 1.000 & -1.000 & -1.000 & 0.4142 & -0.4142 & -0.4142 & 0.4142 \\
1.000 & -1.000 & -1.000 i & 1.000 i & 1.000 & 1.000 i & -1.000 i & -1.000 \\
1.000 & -1.000 & 1.000 i & -1.000 i & 1.000 & -1.000 i & 1.000 i & -1.000 \\
1.000 & -1.000 & 1.000 i & -1.000 i & -1.000 & 1.000 i & -1.000 i & 1.000 \\
1.000 & -1.000 & -1.000 i & 1.000 i & -1.000 & -1.000 i & 1.000 i & 1.000 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 4 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 i 1 . 0 0 0 i 1 . 0 0 0 i − 1 . 0 0 0 i 3 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 i − 1 . 0 0 0 i − 1 . 0 0 0 i 1 . 0 0 0 i 5 2 . 4 1 4 − 0 . 4 1 4 2 − 2 . 4 1 4 0 . 4 1 4 2 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 7 2 . 4 1 4 − 0 . 4 1 4 2 2 . 4 1 4 − 0 . 4 1 4 2 1 . 0 0 0 i − 1 . 0 0 0 i 1 . 0 0 0 i − 1 . 0 0 0 i 8 2 . 4 1 4 − 0 . 4 1 4 2 2 . 4 1 4 − 0 . 4 1 4 2 − 1 . 0 0 0 i 1 . 0 0 0 i − 1 . 0 0 0 i 1 . 0 0 0 i 6 2 . 4 1 4 − 0 . 4 1 4 2 − 2 . 4 1 4 0 . 4 1 4 2 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0
Modular Data
This fusion ring does not have any matching S S S -and T T T -matrices.
Adjoint Subring
Particles 1 , 2 , 7 , 8 \mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{8} 1 , 2 , 7 , 8 , form the adjoint subring Pseudo PSU(2 ) 6 : FR 4 4 , 2 \text{Pseudo PSU(2})_6:\ \text{FR}^{4,2}_{4} Pseudo PSU(2 ) 6 : FR 4 4 , 2 .
The upper central series is the following:
FR 11 8 , 4 ⊃ 1 , 2 , 7 , 8 Pseudo PSU(2 ) 6 \text{FR}^{8,4}_{11} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{8} }{\supset} \text{Pseudo PSU(2})_6 FR 1 1 8 , 4 1 , 2 , 7 , 8 ⊃ Pseudo PSU(2 ) 6
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 2 ′ , deg ( 4 ) = 2 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 1 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{2}', \text{deg}(\mathbf{4}) = \mathbf{2}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{1}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 2 ′ , deg ( 4 ) = 2 ′ , deg ( 5 ) = 2 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 1 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: