FR 3 8 , 2 \text{FR}^{8,2}_{3} FR 3 8 , 2
Fusion Rules
1 2 3 4 5 6 7 8 2 1 6 5 4 3 8 7 3 5 1 6 2 4 8 7 4 6 5 1 3 2 8 7 5 3 4 2 6 1 7 8 6 4 2 3 1 5 7 8 7 8 8 8 7 7 1 + 5 + 6 + 7 2 + 3 + 4 + 8 8 7 7 7 8 8 2 + 3 + 4 + 8 1 + 5 + 6 + 7 \begin{array}{|llllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\
\mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} \\
\mathbf{3} & \mathbf{5} & \mathbf{1} & \mathbf{6} & \mathbf{2} & \mathbf{4} & \mathbf{8} & \mathbf{7} \\
\mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{8} & \mathbf{7} \\
\mathbf{5} & \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{6} & \mathbf{1} & \mathbf{7} & \mathbf{8} \\
\mathbf{6} & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\
\mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{8} \\
\mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{8} & \mathbf{1}+\mathbf{5}+\mathbf{6}+\mathbf{7} \\
\hline
\end{array} 1 2 3 4 5 6 7 8 2 1 5 6 3 4 8 7 3 6 1 5 4 2 8 7 4 5 6 1 2 3 8 7 5 4 2 3 6 1 7 8 6 3 4 2 1 5 7 8 7 8 8 8 7 7 1 + 5 + 6 + 7 2 + 3 + 4 + 8 8 7 7 7 8 8 2 + 3 + 4 + 8 1 + 5 + 6 + 7
The fusion rules are invariant under the group generated by the following permutations:
{ ( 2 3 4 ) , ( 2 4 3 ) , ( 2 3 ) ( 5 6 ) } \{(\mathbf{2} \ \mathbf{3} \ \mathbf{4}), (\mathbf{2} \ \mathbf{4} \ \mathbf{3}), (\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6})\} { ( 2 3 4 ) , ( 2 4 3 ) , ( 2 3 ) ( 5 6 ) }
The following elements form non-trivial sub fusion rings
Elements
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 3 } \{\mathbf{1},\mathbf{3}\} { 1 , 3 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 4 } \{\mathbf{1},\mathbf{4}\} { 1 , 4 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 5 , 6 } \{\mathbf{1},\mathbf{5},\mathbf{6}\} { 1 , 5 , 6 }
Z 3 : FR 1 3 , 2 \mathbb{Z}_3:\ \text{FR}^{3,2}_{1} Z 3 : FR 1 3 , 2
{ 1 , 5 , 6 , 7 } \{\mathbf{1},\mathbf{5},\mathbf{6},\mathbf{7}\} { 1 , 5 , 6 , 7 }
Fib( Z 3 ) : FR 3 4 , 2 \left.\text{Fib(}\mathbb{Z}_3\right):\ \text{FR}^{4,2}_{3} Fib( Z 3 ) : FR 3 4 , 2
{ 1 , 2 , 3 , 4 , 5 , 6 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\} { 1 , 2 , 3 , 4 , 5 , 6 }
D 3 : FR 1 6 , 2 D_3:\ \text{FR}^{6,2}_{1} D 3 : FR 1 6 , 2
Frobenius-Perron Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
1. 1. 1 .
1 1 1
6 \mathbf{6} 6
1. 1. 1 .
1 1 1
7 \mathbf{7} 7
2.30278 2.30278 2 . 3 0 2 7 8
1 2 ( 1 + 13 ) \frac{1}{2} \left(1+\sqrt{13}\right) 2 1 ( 1 + 1 3 )
8 \mathbf{8} 8
2.30278 2.30278 2 . 3 0 2 7 8
1 2 ( 1 + 13 ) \frac{1}{2} \left(1+\sqrt{13}\right) 2 1 ( 1 + 1 3 )
D F P 2 \mathcal{D}_{FP}^2 D F P 2
16.6056 16.6056 1 6 . 6 0 5 6
6 + 1 2 ( 1 + 13 ) 2 6+\frac{1}{2} \left(1+\sqrt{13}\right)^2 6 + 2 1 ( 1 + 1 3 ) 2
Characters
The symbolic character table is the following
1 5 6 2 3 4 7 8 1 1 1 1 1 1 1 2 ( 1 + 13 ) 1 2 ( 1 + 13 ) 1 1 1 1 1 1 1 2 ( 1 − 13 ) 1 2 ( 1 − 13 ) 1 1 1 − 1 − 1 − 1 1 2 ( 1 + 13 ) 1 2 ( − 1 − 13 ) 1 1 1 − 1 − 1 − 1 1 2 ( 1 − 13 ) 1 2 ( 13 − 1 ) 2 − 1 − 1 0 0 0 0 0 \begin{array}{|cccccccc|}
\hline
\mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{13}\right) & \frac{1}{2} \left(1+\sqrt{13}\right) \\
1 & 1 & 1 & 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{13}\right) & \frac{1}{2} \left(1-\sqrt{13}\right) \\
1 & 1 & 1 & -1 & -1 & -1 & \frac{1}{2} \left(1+\sqrt{13}\right) & \frac{1}{2} \left(-1-\sqrt{13}\right) \\
1 & 1 & 1 & -1 & -1 & -1 & \frac{1}{2} \left(1-\sqrt{13}\right) & \frac{1}{2} \left(\sqrt{13}-1\right) \\
2 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} 1 1 1 1 1 2 5 1 1 1 1 − 1 6 1 1 1 1 − 1 2 1 1 − 1 − 1 0 3 1 1 − 1 − 1 0 4 1 1 − 1 − 1 0 7 2 1 ( 1 + 1 3 ) 2 1 ( 1 − 1 3 ) 2 1 ( 1 + 1 3 ) 2 1 ( 1 − 1 3 ) 0 8 2 1 ( 1 + 1 3 ) 2 1 ( 1 − 1 3 ) 2 1 ( − 1 − 1 3 ) 2 1 ( 1 3 − 1 ) 0
The numeric character table is the following
1 5 6 2 3 4 7 8 1.000 1.000 1.000 1.000 1.000 1.000 2.303 2.303 1.000 1.000 1.000 1.000 1.000 1.000 − 1.303 − 1.303 1.000 1.000 1.000 − 1.000 − 1.000 − 1.000 2.303 − 2.303 1.000 1.000 1.000 − 1.000 − 1.000 − 1.000 − 1.303 1.303 2.000 − 1.000 − 1.000 0 0 0 0 0 \begin{array}{|rrrrrrrr|}
\hline
\mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{8} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 2.303 & 2.303 \\
1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & -1.303 & -1.303 \\
1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & 2.303 & -2.303 \\
1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.303 & 1.303 \\
2.000 & -1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 . 0 0 0 5 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 6 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 0 3 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 0 4 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 0 7 2 . 3 0 3 − 1 . 3 0 3 2 . 3 0 3 − 1 . 3 0 3 0 8 2 . 3 0 3 − 1 . 3 0 3 − 2 . 3 0 3 1 . 3 0 3 0
Representations of S L 2 ( Z ) SL_2(\mathbb{Z}) S L 2 ( Z )
This fusion ring does not provide any representations of S L 2 ( Z ) . SL_2(\mathbb{Z}). S L 2 ( Z ) .
Adjoint Subring
Elements 1 , 5 , 6 , 7 \mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{7} 1 , 5 , 6 , 7 , form the adjoint subring Fib( Z 3 ) : FR 3 4 , 2 \left.\text{Fib(}\mathbb{Z}_3\right):\ \text{FR}^{4,2}_{3} Fib( Z 3 ) : FR 3 4 , 2 .
The upper central series is the following:
FR 3 8 , 2 ⊃ 1 , 5 , 6 , 7 Fib( Z 3 ) \text{FR}^{8,2}_{3} \underset{ \mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{7} }{\supset} \left.\text{Fib(}\mathbb{Z}_3\right) FR 3 8 , 2 1 , 5 , 6 , 7 ⊃ Fib( Z 3 )
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 2 ′ , deg ( 3 ) = 2 ′ , deg ( 4 ) = 2 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{2}', \text{deg}(\mathbf{4}) = \mathbf{2}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{1}', \text{deg}(\mathbf{8}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 2 ′ , deg ( 3 ) = 2 ′ , deg ( 4 ) = 2 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 1 ′ , deg ( 7 ) = 1 ′ , deg ( 8 ) = 2 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: