FR118,2\text{FR}^{8,2}_{11}

Fusion Rules

1234567821563487361+3872+65+74+84581+42+576+73+8542+5781+43+86+76372+61+384+85+7786+75+74+83+81+3+4+82+5+6+7874+83+86+75+72+5+6+71+3+4+8\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{3} & \mathbf{4} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{6} & \mathbf{1}+\mathbf{3} & \mathbf{8} & \mathbf{7} & \mathbf{2}+\mathbf{6} & \mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{8} \\ \mathbf{4} & \mathbf{5} & \mathbf{8} & \mathbf{1}+\mathbf{4} & \mathbf{2}+\mathbf{5} & \mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{3}+\mathbf{8} \\ \mathbf{5} & \mathbf{4} & \mathbf{2}+\mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{1}+\mathbf{4} & \mathbf{3}+\mathbf{8} & \mathbf{6}+\mathbf{7} \\ \mathbf{6} & \mathbf{3} & \mathbf{7} & \mathbf{2}+\mathbf{6} & \mathbf{1}+\mathbf{3} & \mathbf{8} & \mathbf{4}+\mathbf{8} & \mathbf{5}+\mathbf{7} \\ \mathbf{7} & \mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{8} & \mathbf{3}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{8} & \mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} \\ \mathbf{8} & \mathbf{7} & \mathbf{4}+\mathbf{8} & \mathbf{3}+\mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{7} & \mathbf{2}+\mathbf{5}+\mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{8} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(3 4)(5 6)}\{(\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{6})\}

The following elements form non-trivial sub fusion rings

Elements SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,3}\{\mathbf{1},\mathbf{3}\} Fib: FR22,0\text{Fib}:\ \text{FR}^{2,0}_{2}
{1,4}\{\mathbf{1},\mathbf{4}\} Fib: FR22,0\text{Fib}:\ \text{FR}^{2,0}_{2}
{1,3,4,8}\{\mathbf{1},\mathbf{3},\mathbf{4},\mathbf{8}\} \(\text{Fib×\times Fib}:\ \text{FR}^{4,0}_{5}\)

Frobenius-Perron Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.618031.61803 12(1+5)\frac{1}{2} \left(1+\sqrt{5}\right)
4\mathbf{4} 1.618031.61803 12(1+5)\frac{1}{2} \left(1+\sqrt{5}\right)
5\mathbf{5} 1.618031.61803 12(1+5)\frac{1}{2} \left(1+\sqrt{5}\right)
6\mathbf{6} 1.618031.61803 12(1+5)\frac{1}{2} \left(1+\sqrt{5}\right)
7\mathbf{7} 2.618032.61803 12(3+5)\frac{1}{2} \left(3+\sqrt{5}\right)
8\mathbf{8} 2.618032.61803 12(3+5)\frac{1}{2} \left(3+\sqrt{5}\right)
DFP2\mathcal{D}_{FP}^2 26.180326.1803 2+(1+5)2+12(3+5)22+\left(1+\sqrt{5}\right)^2+\frac{1}{2} \left(3+\sqrt{5}\right)^2

Characters

The symbolic character table is the following

125643871112(1+5)12(1+5)12(1+5)12(1+5)12(3+5)12(3+5)1112(15)12(15)12(15)12(15)12(35)12(35)1112(51)12(51)12(15)12(15)12(35)12(53)1112(15)12(15)12(1+5)12(1+5)12(3+5)12(35)2000712171220\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} \\ \hline 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) \\ 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) \\ 1 & -1 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-3\right) \\ 1 & -1 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(-3-\sqrt{5}\right) \\ 2 & 0 & 0 & 0 & \frac{7}{12} & \frac{17}{12} & -2 & 0 \\ \hline \end{array}

The numeric character table is the following

125643871.0001.0001.6181.6181.6181.6182.6182.6181.0001.0000.61800.61800.61800.61800.38200.38201.0001.0000.61800.61800.61800.61800.38200.38201.0001.0001.6181.6181.6181.6182.6182.6182.0000000.58331.4172.0000\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{8} & \mathbf{7} \\ \hline 1.000 & 1.000 & 1.618 & 1.618 & 1.618 & 1.618 & 2.618 & 2.618 \\ 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 & -0.6180 & 0.3820 & 0.3820 \\ 1.000 & -1.000 & 0.6180 & 0.6180 & -0.6180 & -0.6180 & 0.3820 & -0.3820 \\ 1.000 & -1.000 & -1.618 & -1.618 & 1.618 & 1.618 & 2.618 & -2.618 \\ 2.000 & 0 & 0 & 0 & 0.5833 & 1.417 & -2.000 & 0 \\ \hline \end{array}

Representations of SL2(Z)SL_2(\mathbb{Z})

This fusion ring does not provide any representations of SL2(Z).SL_2(\mathbb{Z}).

Adjoint Subring

Elements 1,3,4,8\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{8}, form the adjoint subring \(\text{Fib×\times Fib}:\ \text{FR}^{4,0}_{5}\) .

The upper central series is the following: \(\text{FR}^{8,2}_{11} \underset{ \mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{8} }{\supset} \text{Fib×\times Fib}\)

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=2,deg(3)=1,deg(4)=1,deg(5)=2,deg(6)=2,deg(7)=2,deg(8)=1\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{2}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{1}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: