\(\text{FR}^{8,0}_{9}: \mathrm{Adj}(\mathrm{SO}(13)_2)\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{4} \\ \mathbf{4} & \mathbf{4} & \mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{6} & \mathbf{5}+\mathbf{8} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{6} & \mathbf{3}+\mathbf{5} \\ \mathbf{5} & \mathbf{5} & \mathbf{6}+\mathbf{7} & \mathbf{5}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{8} & \mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{6} \\ \mathbf{6} & \mathbf{6} & \mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{3}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{4}+\mathbf{8} & \mathbf{5}+\mathbf{7} \\ \mathbf{7} & \mathbf{7} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{6} & \mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{5} & \mathbf{6}+\mathbf{8} \\ \mathbf{8} & \mathbf{8} & \mathbf{3}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{7} & \mathbf{6}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{7} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{6} \ \mathbf{4} \ \mathbf{5} \ \mathbf{7} \ \mathbf{8}), (\mathbf{3} \ \mathbf{8} \ \mathbf{7} \ \mathbf{5} \ \mathbf{4} \ \mathbf{6})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.\) | \(2\) |
\(\mathbf{4}\) | \(2.\) | \(2\) |
\(\mathbf{5}\) | \(2.\) | \(2\) |
\(\mathbf{6}\) | \(2.\) | \(2\) |
\(\mathbf{7}\) | \(2.\) | \(2\) |
\(\mathbf{8}\) | \(2.\) | \(2\) |
\(\mathcal{D}_{FP}^2\) | \(26.\) | \(26\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \hline 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,5\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,1\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,4\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,6\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,2\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,3\right] \\ 1 & 1 & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,2\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,5\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,6\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,3\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,1\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,4\right] \\ 1 & 1 & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,3\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,6\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,1\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,5\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,4\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,2\right] \\ 1 & 1 & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,4\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,3\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,5\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,2\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,6\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,1\right] \\ 1 & 1 & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,1\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,2\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,3\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,4\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,5\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,6\right] \\ 1 & 1 & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,6\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,4\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,2\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,1\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,3\right] & \text{Root}\left[x^6+x^5-5 x^4-4 x^3+6 x^2+3 x-1,5\right] \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 & 2.000 \\ 1.000 & 1.000 & 1.136 & -1.942 & 0.2411 & 1.771 & -1.497 & -0.7092 \\ 1.000 & 1.000 & -1.497 & 1.136 & 1.771 & -0.7092 & -1.942 & 0.2411 \\ 1.000 & 1.000 & -0.7092 & 1.771 & -1.942 & 1.136 & 0.2411 & -1.497 \\ 1.000 & 1.000 & 0.2411 & -0.7092 & 1.136 & -1.497 & 1.771 & -1.942 \\ 1.000 & 1.000 & -1.942 & -1.497 & -0.7092 & 0.2411 & 1.136 & 1.771 \\ 1.000 & 1.000 & 1.771 & 0.2411 & -1.497 & -1.942 & -0.7092 & 1.136 \\ 1.000 & -1.000 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\]Modular Data
This fusion ring does not have any matching \(S\)-and \(T\)-matrices.
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
Data
Download links for numeric data: