\[\text{One-half SO}(12)_2: \text{FR}^{8,0}_{4}\]

\(\text{One-half SO}(12)_2: \text{FR}^{8,0}_{4}\)

“One-half” means taking the \((0,0)\) and \((0,1)\) (equivalently, \((0,0)\) and \((1,0)\) components) of the \(\mathbb{Z}_2\times \mathbb{Z}_2\)-grading on \(\text{SO}(12)_2\)

Fusion Rules

\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \mathbf{5} & \mathbf{6} & \mathbf{6} & \mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{5} & \mathbf{5} & \mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{7} & \mathbf{8} & \mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{5}+\mathbf{6} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{8} & \mathbf{8} & \mathbf{7} & \mathbf{7} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{7} \ \mathbf{8})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{3}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{4}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{4},\mathbf{6}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\}\) \(\\mathbb{Z}_2 \times \text{Rep}(D_3):\ \text{FR}^{6,0}_{2}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(1.\) \(1\)
\(\mathbf{4}\) \(1.\) \(1\)
\(\mathbf{5}\) \(2.\) \(2\)
\(\mathbf{6}\) \(2.\) \(2\)
\(\mathbf{7}\) \(2.44949\) \(\sqrt{6}\)
\(\mathbf{8}\) \(2.44949\) \(\sqrt{6}\)
\(\mathcal{D}_{FP}^2\) \(24.\) \(24\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\ \hline 1 & 1 & 1 & 1 & 2 & 2 & \sqrt{6} & \sqrt{6} \\ 1 & 1 & 1 & 1 & 2 & 2 & -\sqrt{6} & -\sqrt{6} \\ 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & -1 & -1 & 1 & 2 & -2 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 & -\sqrt{2} & \sqrt{2} \\ 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 & \sqrt{2} & -\sqrt{2} \\ 1 & -1 & -1 & 1 & -1 & 1 & 0 & 0 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{8} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.449 & 2.449 \\ 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & -2.449 & -2.449 \\ 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 2.000 & -2.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & -1.414 & 1.414 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 & 0 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 1.414 & -1.414 \\ 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & 1.000 & 0 & 0 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\), form the adjoint subring \(\mathbb{Z}_2 \times \text{Rep}(D_3):\ \text{FR}^{6,0}_{2}\) .

The upper central series is the following: \(\text{FR}^{8,0}_{4} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6} }{\supset} \left.\mathbb{Z}_2\text{$\times $Rep(}D_3\right) \underset{ \mathbf{1}, \mathbf{4}, \mathbf{6} }{\supset} \left.\text{Rep(}D_3\right)\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: