\(\text{PSU}(2)_{14}:\ \text{FR}^{8,0}_{31}\)

Fusion Rules

\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{4} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{5}+\mathbf{7}+\mathbf{8} \\ \mathbf{4} & \mathbf{3} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{7}+\mathbf{8} \\ \mathbf{5} & \mathbf{6} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{5} & \mathbf{3}+\mathbf{5}+\mathbf{7} & \mathbf{4}+\mathbf{6}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{4}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{8} & \mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \mathbf{8} & \mathbf{7} & \mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \hline \end{array}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(2.84776\) \(1+\sqrt{2+\sqrt{2}}\)
\(\mathbf{4}\) \(2.84776\) \(1+\sqrt{2+\sqrt{2}}\)
\(\mathbf{5}\) \(4.26197\) \(\text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,4\right]\)
\(\mathbf{6}\) \(4.26197\) \(\text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,4\right]\)
\(\mathbf{7}\) \(5.02734\) \(\text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,4\right]\)
\(\mathbf{8}\) \(5.02734\) \(\text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,4\right]\)
\(\mathcal{D}_{FP}^2\) \(105.097\) \(2 \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,4\right]^2+2 \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,4\right]^2+2+2 \left(1+\sqrt{2+\sqrt{2}}\right)^2\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \hline 1 & 1 & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,4\right] & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,4\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,4\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,4\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,4\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,4\right] \\ 1 & 1 & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,3\right] & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,3\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,2\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,2\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,1\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,1\right] \\ 1 & 1 & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,2\right] & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,2\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,1\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,1\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,3\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,3\right] \\ 1 & 1 & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,1\right] & \text{Root}\left[x^4-4 x^3+2 x^2+4 x-1,1\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,3\right] & \text{Root}\left[x^4-4 x^3-2 x^2+4 x-1,3\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,2\right] & \text{Root}\left[x^4-4 x^3-6 x^2+4 x+1,2\right] \\ 1 & -1 & -1-\sqrt{2} & 1+\sqrt{2} & 1+\sqrt{2} & -1-\sqrt{2} & 1 & -1 \\ 1 & -1 & \sqrt{2}-1 & 1-\sqrt{2} & 1-\sqrt{2} & \sqrt{2}-1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \hline 1.000 & 1.000 & 2.848 & 2.848 & 4.262 & 4.262 & 5.027 & 5.027 \\ 1.000 & 1.000 & 1.765 & 1.765 & 0.3512 & 0.3512 & -1.497 & -1.497 \\ 1.000 & 1.000 & 0.2346 & 0.2346 & -1.180 & -1.180 & 0.6682 & 0.6682 \\ 1.000 & 1.000 & -0.8478 & -0.8478 & 0.5665 & 0.5665 & -0.1989 & -0.1989 \\ 1.000 & -1.000 & -2.414 & 2.414 & 2.414 & -2.414 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0.4142 & -0.4142 & -0.4142 & 0.4142 & 1.000 & -1.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & 1.000 \\ 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & 1.000 \\ \hline \end{array}\]

Modular Data

This fusion ring does not have any matching \(S\)-and \(T\)-matrices.

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

Data

Download links for numeric data: