\(\text{Fib$\times $Fib$\times $Fib}:\ \text{FR}^{8,0}_{22}\)

Fusion Rules

\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1}+\mathbf{2} & \mathbf{7} & \mathbf{5} & \mathbf{4}+\mathbf{5} & \mathbf{8} & \mathbf{3}+\mathbf{7} & \mathbf{6}+\mathbf{8} \\ \mathbf{3} & \mathbf{7} & \mathbf{1}+\mathbf{3} & \mathbf{6} & \mathbf{8} & \mathbf{4}+\mathbf{6} & \mathbf{2}+\mathbf{7} & \mathbf{5}+\mathbf{8} \\ \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{1}+\mathbf{4} & \mathbf{2}+\mathbf{5} & \mathbf{3}+\mathbf{6} & \mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{5} & \mathbf{4}+\mathbf{5} & \mathbf{8} & \mathbf{2}+\mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{4}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{6}+\mathbf{8} & \mathbf{3}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{8} & \mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{6} & \mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{6} & \mathbf{5}+\mathbf{8} & \mathbf{2}+\mathbf{5}+\mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{3}+\mathbf{7} & \mathbf{2}+\mathbf{7} & \mathbf{8} & \mathbf{6}+\mathbf{8} & \mathbf{5}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{7} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{8} \\ \mathbf{8} & \mathbf{6}+\mathbf{8} & \mathbf{5}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{3}+\mathbf{6}+\mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{5}+\mathbf{7}+\mathbf{8} & \mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{8} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6}+\mathbf{7}+\mathbf{8} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6}), (\mathbf{2} \ \mathbf{4}) (\mathbf{6} \ \mathbf{7}), (\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{7})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\text{Fib}:\ \text{FR}^{2,0}_{2}\)
\(\{\mathbf{1},\mathbf{3}\}\) \(\text{Fib}:\ \text{FR}^{2,0}_{2}\)
\(\{\mathbf{1},\mathbf{4}\}\) \(\text{Fib}:\ \text{FR}^{2,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{7}\}\) \(\text{Fib$\times $Fib}:\ \text{FR}^{4,0}_{5}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{4},\mathbf{5}\}\) \(\text{Fib$\times $Fib}:\ \text{FR}^{4,0}_{5}\)
\(\{\mathbf{1},\mathbf{3},\mathbf{4},\mathbf{6}\}\) \(\text{Fib$\times $Fib}:\ \text{FR}^{4,0}_{5}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.61803\) \(\frac{1}{2} \left(1+\sqrt{5}\right)\)
\(\mathbf{3}\) \(1.61803\) \(\frac{1}{2} \left(1+\sqrt{5}\right)\)
\(\mathbf{4}\) \(1.61803\) \(\frac{1}{2} \left(1+\sqrt{5}\right)\)
\(\mathbf{5}\) \(2.61803\) \(\frac{1}{2} \left(3+\sqrt{5}\right)\)
\(\mathbf{6}\) \(2.61803\) \(\frac{1}{2} \left(3+\sqrt{5}\right)\)
\(\mathbf{7}\) \(2.61803\) \(\frac{1}{2} \left(3+\sqrt{5}\right)\)
\(\mathbf{8}\) \(4.23607\) \(2+\sqrt{5}\)
\(\mathcal{D}_{FP}^2\) \(47.3607\) \(1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \hline 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & 2+\sqrt{5} \\ 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & -1 & \frac{1}{2} \left(3+\sqrt{5}\right) & -1 & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(3+\sqrt{5}\right) & -1 & -1 & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & -1 & -1 & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & -1 & -1 & \frac{1}{2} \left(\sqrt{5}-1\right) \\ 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & -1 & \frac{1}{2} \left(3-\sqrt{5}\right) & -1 & \frac{1}{2} \left(\sqrt{5}-1\right) \\ 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & -1 & -1 & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) \\ 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & \frac{1}{2} \left(3-\sqrt{5}\right) & 2-\sqrt{5} \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \hline 1.000 & 1.618 & 1.618 & 1.618 & 2.618 & 2.618 & 2.618 & 4.236 \\ 1.000 & -0.6180 & 1.618 & 1.618 & -1.000 & 2.618 & -1.000 & -1.618 \\ 1.000 & 1.618 & -0.6180 & 1.618 & 2.618 & -1.000 & -1.000 & -1.618 \\ 1.000 & 1.618 & 1.618 & -0.6180 & -1.000 & -1.000 & 2.618 & -1.618 \\ 1.000 & -0.6180 & 1.618 & -0.6180 & 0.3820 & -1.000 & -1.000 & 0.6180 \\ 1.000 & 1.618 & -0.6180 & -0.6180 & -1.000 & 0.3820 & -1.000 & 0.6180 \\ 1.000 & -0.6180 & -0.6180 & 1.618 & -1.000 & -1.000 & 0.3820 & 0.6180 \\ 1.000 & -0.6180 & -0.6180 & -0.6180 & 0.3820 & 0.3820 & 0.3820 & -0.2361 \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{1}{\sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2}}\left(\begin{array}{cccccccc} \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,2\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] \\ \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,4\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,1\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-25 x^2+1,3\right] & \sqrt{1+\frac{3}{4} \left(1+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2+\frac{3}{4} \left(3+\sqrt{5}\right)^2} \text{Root}\left[125 x^4-50 x^2+1,2\right] \\\end{array}\right)\) \(\begin{array}{l}\left(0,-\frac{2}{5},-\frac{2}{5},\frac{2}{5},0,0,\frac{1}{5},-\frac{2}{5}\right) \\\left(0,-\frac{2}{5},\frac{2}{5},-\frac{2}{5},\frac{1}{5},0,0,-\frac{2}{5}\right) \\\left(0,\frac{2}{5},-\frac{2}{5},-\frac{2}{5},0,\frac{1}{5},0,-\frac{2}{5}\right) \\\left(0,\frac{2}{5},\frac{2}{5},-\frac{2}{5},0,0,-\frac{1}{5},\frac{2}{5}\right) \\\left(0,\frac{2}{5},-\frac{2}{5},\frac{2}{5},-\frac{1}{5},0,0,\frac{2}{5}\right) \\\left(0,-\frac{2}{5},\frac{2}{5},\frac{2}{5},0,-\frac{1}{5},0,\frac{2}{5}\right) \\\left(0,-\frac{2}{5},-\frac{2}{5},-\frac{2}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},-\frac{1}{5}\right) \\\left(0,\frac{2}{5},\frac{2}{5},\frac{2}{5},-\frac{1}{5},-\frac{1}{5},-\frac{1}{5},\frac{1}{5}\right)\end{array}\)

Adjoint Subring

The adjoint subring is the ring itself.

The upper central series is trivial.

Universal grading

This fusion ring allows only the trivial grading.

Categorifications

Data

Download links for numeric data: