\(\text{Fib$\times $}\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{8,0}_{2}\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{7} & \mathbf{8} & \mathbf{5} & \mathbf{6} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{8} & \mathbf{7} & \mathbf{6} & \mathbf{5} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{6} & \mathbf{5} & \mathbf{8} & \mathbf{7} \\ \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{6} & \mathbf{1}+\mathbf{8} & \mathbf{4}+\mathbf{7} & \mathbf{2}+\mathbf{6} & \mathbf{3}+\mathbf{5} \\ \mathbf{6} & \mathbf{8} & \mathbf{7} & \mathbf{5} & \mathbf{4}+\mathbf{7} & \mathbf{1}+\mathbf{8} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} \\ \mathbf{7} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{2}+\mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{8} & \mathbf{4}+\mathbf{7} \\ \mathbf{8} & \mathbf{6} & \mathbf{5} & \mathbf{7} & \mathbf{3}+\mathbf{5} & \mathbf{2}+\mathbf{6} & \mathbf{4}+\mathbf{7} & \mathbf{1}+\mathbf{8} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{2} \ \mathbf{3}) (\mathbf{5} \ \mathbf{6}), (\mathbf{2} \ \mathbf{4}) (\mathbf{6} \ \mathbf{7}), (\mathbf{3} \ \mathbf{4}) (\mathbf{5} \ \mathbf{7})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{3}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{4}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{8}\}\) | \(\text{Fib}:\ \text{FR}^{2,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\}\) | \(\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{6},\mathbf{8}\}\) | \(\text{SU(2})_3:\ \text{FR}^{4,0}_{2}\) |
\(\{\mathbf{1},\mathbf{3},\mathbf{5},\mathbf{8}\}\) | \(\text{SU(2})_3:\ \text{FR}^{4,0}_{2}\) |
\(\{\mathbf{1},\mathbf{4},\mathbf{7},\mathbf{8}\}\) | \(\text{SU(2})_3:\ \text{FR}^{4,0}_{2}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(1.\) | \(1\) |
\(\mathbf{4}\) | \(1.\) | \(1\) |
\(\mathbf{5}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathbf{6}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathbf{7}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathbf{8}\) | \(1.61803\) | \(\frac{1}{2} \left(1+\sqrt{5}\right)\) |
\(\mathcal{D}_{FP}^2\) | \(14.4721\) | \(4+\left(1+\sqrt{5}\right)^2\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{8} & \mathbf{5} & \mathbf{6} \\ \hline 1 & 1 & 1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\ 1 & 1 & 1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) \\ 1 & -1 & 1 & -1 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & 1 & -1 & -1 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\ 1 & -1 & -1 & 1 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ 1 & 1 & -1 & -1 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(1-\sqrt{5}\right) \\ 1 & -1 & 1 & -1 & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) \\ 1 & -1 & -1 & 1 & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(1-\sqrt{5}\right) & \frac{1}{2} \left(\sqrt{5}-1\right) & \frac{1}{2} \left(\sqrt{5}-1\right) \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{8} & \mathbf{5} & \mathbf{6} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 1.618 & 1.618 & 1.618 & 1.618 \\ 1.000 & 1.000 & 1.000 & 1.000 & -0.6180 & -0.6180 & -0.6180 & -0.6180 \\ 1.000 & -1.000 & 1.000 & -1.000 & -1.618 & 1.618 & 1.618 & -1.618 \\ 1.000 & 1.000 & -1.000 & -1.000 & -1.618 & 1.618 & -1.618 & 1.618 \\ 1.000 & -1.000 & -1.000 & 1.000 & 1.618 & 1.618 & -1.618 & -1.618 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0.6180 & -0.6180 & 0.6180 & -0.6180 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0.6180 & -0.6180 & -0.6180 & 0.6180 \\ 1.000 & -1.000 & -1.000 & 1.000 & -0.6180 & -0.6180 & 0.6180 & 0.6180 \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{1}{\sqrt{4+\left(1+\sqrt{5}\right)^2}}\left(\begin{array}{cccccccc} \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\\end{array}\right)\) | \(\begin{array}{l}\left(0,\frac{1}{4},\frac{1}{4},\frac{1}{2},-\frac{3}{20},-\frac{3}{20},\frac{1}{10},-\frac{2}{5}\right) \\\left(0,\frac{1}{4},\frac{1}{4},\frac{1}{2},-\frac{7}{20},-\frac{7}{20},-\frac{1}{10},\frac{2}{5}\right) \\\left(0,-\frac{1}{4},-\frac{1}{4},\frac{1}{2},\frac{7}{20},\frac{7}{20},\frac{1}{10},-\frac{2}{5}\right) \\\left(0,-\frac{1}{4},-\frac{1}{4},\frac{1}{2},\frac{3}{20},\frac{3}{20},-\frac{1}{10},\frac{2}{5}\right) \\\left(0,-\frac{1}{4},\frac{1}{4},0,-\frac{3}{20},\frac{7}{20},-\frac{2}{5},-\frac{2}{5}\right) \\\left(0,\frac{1}{4},-\frac{1}{4},0,\frac{7}{20},-\frac{3}{20},-\frac{2}{5},-\frac{2}{5}\right) \\\left(0,-\frac{1}{4},\frac{1}{4},0,-\frac{7}{20},\frac{3}{20},\frac{2}{5},\frac{2}{5}\right) \\\left(0,\frac{1}{4},-\frac{1}{4},0,\frac{3}{20},-\frac{7}{20},\frac{2}{5},\frac{2}{5}\right)\end{array}\) |
\(\frac{1}{\sqrt{4+\left(1+\sqrt{5}\right)^2}}\left(\begin{array}{cccccccc} \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,1\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,3\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\ \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,4\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] & \sqrt{4+\left(1+\sqrt{5}\right)^2} \text{Root}\left[80 x^4-20 x^2+1,2\right] \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,0,\frac{1}{2},\frac{2}{5},\frac{2}{5},-\frac{1}{10},\frac{2}{5}\right) \\\left(0,0,\frac{1}{2},0,-\frac{1}{10},\frac{2}{5},\frac{2}{5},\frac{2}{5}\right) \\\left(0,\frac{1}{2},0,0,\frac{2}{5},-\frac{1}{10},\frac{2}{5},\frac{2}{5}\right) \\\left(0,\frac{1}{2},0,0,-\frac{2}{5},\frac{1}{10},-\frac{2}{5},-\frac{2}{5}\right) \\\left(0,0,\frac{1}{2},0,\frac{1}{10},-\frac{2}{5},-\frac{2}{5},-\frac{2}{5}\right) \\\left(0,0,0,\frac{1}{2},-\frac{2}{5},-\frac{2}{5},\frac{1}{10},-\frac{2}{5}\right) \\\left(0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{10},\frac{1}{10},\frac{1}{10},-\frac{2}{5}\right) \\\left(0,\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{10},-\frac{1}{10},-\frac{1}{10},\frac{2}{5}\right)\end{array}\) |
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{8}\), form the adjoint subring \(\text{Fib}:\ \text{FR}^{2,0}_{2}\) .
The upper central series is the following: \(\text{Fib$\times $}\mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1}, \mathbf{8} }{\supset} \text{Fib}\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{2}', \text{deg}(\mathbf{3}) = \mathbf{3}', \text{deg}(\mathbf{4}) = \mathbf{4}', \text{deg}(\mathbf{5}) = \mathbf{3}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{4}', \text{deg}(\mathbf{8}) = \mathbf{1}'\), where the degrees form the group \(\mathbb{Z}_2\times \mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|llll|} \hline \mathbf{1}' & \mathbf{2}' & \mathbf{3}' & \mathbf{4}' \\ \mathbf{2}' & \mathbf{1}' & \mathbf{4}' & \mathbf{3}' \\ \mathbf{3}' & \mathbf{4}' & \mathbf{1}' & \mathbf{2}' \\ \mathbf{4}' & \mathbf{3}' & \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: