\(\text{FR}^{8,0}_{14}\)

Fusion Rules

\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{4} & \mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{5} & \mathbf{5} & \mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{6} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{8} & \mathbf{7} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{3} \ \mathbf{4}), (\mathbf{3} \ \mathbf{5}), (\mathbf{3} \ \mathbf{6}), (\mathbf{4} \ \mathbf{5}), (\mathbf{4} \ \mathbf{6}), (\mathbf{5} \ \mathbf{6}), (\mathbf{7} \ \mathbf{8})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{4}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{5}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{6}\}\) \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\}\) \(\text{FR}^{6,0}_{8}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(2.\) \(2\)
\(\mathbf{4}\) \(2.\) \(2\)
\(\mathbf{5}\) \(2.\) \(2\)
\(\mathbf{6}\) \(2.\) \(2\)
\(\mathbf{7}\) \(3.\) \(3\)
\(\mathbf{8}\) \(3.\) \(3\)
\(\mathcal{D}_{FP}^2\) \(36.\) \(36\)

Characters

The symbolic character table is the following

\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \hline 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 1 & 1 & -1 & -1 & 2 & -1 & 0 & 0 \\ 1 & 1 & -1 & 2 & -1 & -1 & 0 & 0 \\ 1 & 1 & -1 & -1 & -1 & 2 & 0 & 0 \\ 1 & 1 & 2 & -1 & -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & 1 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & 3.000 & 3.000 \\ 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & -3.000 & -3.000 \\ 1.000 & 1.000 & -1.000 & -1.000 & 2.000 & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & 2.000 & -1.000 & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & 2.000 & 0 & 0 \\ 1.000 & 1.000 & 2.000 & -1.000 & -1.000 & -1.000 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & 0 & 0 & 0 & -1.000 & 1.000 \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},0,\frac{1}{2}\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},0,\frac{1}{2}\right)\end{array}\)
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right)\end{array}\)
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right)\end{array}\)
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},0,\frac{1}{2}\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\frac{1}{2}\right)\end{array}\)

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\), form the adjoint subring \(\text{FR}^{6,0}_{8}\) .

The upper central series is the following: \(\text{FR}^{8,0}_{14} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6} }{\supset} \text{FR}^{6,0}_{8}\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: