\(\text{FR}^{8,0}_{14}\)
Fusion Rules
\[\begin{array}{|llllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{5}+\mathbf{6} & \mathbf{4}+\mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{4} & \mathbf{4} & \mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{3}+\mathbf{6} & \mathbf{3}+\mathbf{5} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{5} & \mathbf{5} & \mathbf{4}+\mathbf{6} & \mathbf{3}+\mathbf{6} & \mathbf{1}+\mathbf{2}+\mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{6} & \mathbf{6} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{1}+\mathbf{2}+\mathbf{6} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} \\ \mathbf{7} & \mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \mathbf{8} & \mathbf{7} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{7}+\mathbf{8} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5}+\mathbf{6} \\ \hline \end{array}\]The fusion rules are invariant under the group generated by the following permutations:
\[\{(\mathbf{3} \ \mathbf{4}), (\mathbf{3} \ \mathbf{5}), (\mathbf{3} \ \mathbf{6}), (\mathbf{4} \ \mathbf{5}), (\mathbf{4} \ \mathbf{6}), (\mathbf{5} \ \mathbf{6}), (\mathbf{7} \ \mathbf{8})\}\]The following particles form non-trivial sub fusion rings
Particles | SubRing |
---|---|
\(\{\mathbf{1},\mathbf{2}\}\) | \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{4}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{5}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{6}\}\) | \(\left.\text{Rep(}D_3\right):\ \text{FR}^{3,0}_{2}\) |
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{6}\}\) | \(\text{FR}^{6,0}_{8}\) |
Quantum Dimensions
Particle | Numeric | Symbolic |
---|---|---|
\(\mathbf{1}\) | \(1.\) | \(1\) |
\(\mathbf{2}\) | \(1.\) | \(1\) |
\(\mathbf{3}\) | \(2.\) | \(2\) |
\(\mathbf{4}\) | \(2.\) | \(2\) |
\(\mathbf{5}\) | \(2.\) | \(2\) |
\(\mathbf{6}\) | \(2.\) | \(2\) |
\(\mathbf{7}\) | \(3.\) | \(3\) |
\(\mathbf{8}\) | \(3.\) | \(3\) |
\(\mathcal{D}_{FP}^2\) | \(36.\) | \(36\) |
Characters
The symbolic character table is the following
\[\begin{array}{|cccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \hline 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 1 & 1 & -1 & -1 & 2 & -1 & 0 & 0 \\ 1 & 1 & -1 & 2 & -1 & -1 & 0 & 0 \\ 1 & 1 & -1 & -1 & -1 & 2 & 0 & 0 \\ 1 & 1 & 2 & -1 & -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & 1 \\ \hline \end{array}\]The numeric character table is the following
\[\begin{array}{|rrrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{8} & \mathbf{7} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & 3.000 & 3.000 \\ 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.000 & -3.000 & -3.000 \\ 1.000 & 1.000 & -1.000 & -1.000 & 2.000 & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & 2.000 & -1.000 & -1.000 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & 2.000 & 0 & 0 \\ 1.000 & 1.000 & 2.000 & -1.000 & -1.000 & -1.000 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & 0 & 0 & 0 & -1.000 & 1.000 \\ \hline \end{array}\]Modular Data
The matching \(S\)-matrices and twist factors are the following
\(S\)-matrix | Twist factors |
---|---|
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},0,\frac{1}{2}\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},0,\frac{1}{2}\right)\end{array}\) |
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,0,0,\frac{1}{3},-\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,0,0,-\frac{1}{3},\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right)\end{array}\) |
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{4},-\frac{1}{4}\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},-\frac{1}{4},\frac{1}{4}\right)\end{array}\) |
\(\frac{1}{6}\left(\begin{array}{cccccccc} 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 2 & 2 & 2 & 2 & -3 & -3 \\ 2 & 2 & -2 & 4 & -2 & -2 & 0 & 0 \\ 2 & 2 & 4 & -2 & -2 & -2 & 0 & 0 \\ 2 & 2 & -2 & -2 & -2 & 4 & 0 & 0 \\ 2 & 2 & -2 & -2 & 4 & -2 & 0 & 0 \\ 3 & -3 & 0 & 0 & 0 & 0 & -3 & 3 \\ 3 & -3 & 0 & 0 & 0 & 0 & 3 & -3 \\\end{array}\right)\) | \(\begin{array}{l}\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,\frac{1}{3},\frac{1}{3},-\frac{1}{3},-\frac{1}{3},0,\frac{1}{2}\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{2},0\right) \\\left(0,0,-\frac{1}{3},-\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\frac{1}{2}\right)\end{array}\) |
Adjoint Subring
Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\), form the adjoint subring \(\text{FR}^{6,0}_{8}\) .
The upper central series is the following: \(\text{FR}^{8,0}_{14} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6} }{\supset} \text{FR}^{6,0}_{8}\)
Universal grading
Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{1}', \text{deg}(\mathbf{7}) = \mathbf{2}', \text{deg}(\mathbf{8}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:
\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]Categorifications
Data
Download links for numeric data: