FR77,4
Fusion Rules
1234567231467531247564441+2+3+5+6+74+5+6+74+5+6+74+5+6+75674+5+6+71+4+5+6+72+4+5+6+73+4+5+6+76754+5+6+72+4+5+6+73+4+5+6+71+4+5+6+77564+5+6+73+4+5+6+71+4+5+6+72+4+5+6+7
The fusion rules are invariant under the group generated by the following permutations:
{(2 3)(6 7)}
The following particles form non-trivial sub fusion rings
Quantum Dimensions
Particle |
Numeric |
Symbolic |
1 |
1. |
1 |
2 |
1. |
1 |
3 |
1. |
1 |
4 |
3.94282 |
Root[x3−3x2−6x+9,3] |
5 |
4.18194 |
Root[x3−4x2−x+1,3] |
6 |
4.18194 |
Root[x3−4x2−x+1,3] |
7 |
4.18194 |
Root[x3−4x2−x+1,3] |
DFP2 |
71.0118 |
Root[x3−3x2−6x+9,3]2+3Root[x3−4x2−x+1,3]2+3 |
Characters
The symbolic character table is the following
1111111121110−121(−1+i3)21(−1−i3)3111−1021(−1−i3)21(−1+i3)4Root[x3−3x2−6x+9,3]Root[x3−3x2−6x+9,2]Root[x3−3x2−6x+9,1]00005Root[x3−4x2−x+1,3]Root[x3−4x2−x+1,1]Root[x3−4x2−x+1,2]11−1−17Root[x3−4x2−x+1,3]Root[x3−4x2−x+1,1]Root[x3−4x2−x+1,2]−1021(1+i3)21(1−i3)6Root[x3−4x2−x+1,3]Root[x3−4x2−x+1,1]Root[x3−4x2−x+1,2]0−121(1−i3)21(1+i3)
The numeric character table is the following
11.0001.0001.0001.0001.0001.0001.00021.0001.0001.0000−1.000−0.5000+0.8660i−0.5000−0.8660i31.0001.0001.000−1.0000−0.5000−0.8660i−0.5000+0.8660i43.9431.111−2.054000054.182−0.58840.40641.0001.000−1.000−1.00074.182−0.58840.4064−1.00000.5000+0.8660i0.5000−0.8660i64.182−0.58840.40640−1.0000.5000−0.8660i0.5000+0.8660i
Modular Data
This fusion ring does not have any matching S-and T-matrices.
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
This fusion ring has no categorifications because of the extended cyclotomic criterion.
Data
Download links for numeric data: