Rep(SD16): FR47,2\text{Rep}(SD_{16}):\ \text{FR}^{7,2}_{4}

SD16SD_{16} GAP ID: [16,8]

Fusion Rules

123456721435763412576432156755551+2+3+46+76+767766+72+3+51+4+576676+71+4+52+3+5\begin{array}{|lllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\ \mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\ \mathbf{6} & \mathbf{7} & \mathbf{7} & \mathbf{6} & \mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{5} \\ \mathbf{7} & \mathbf{6} & \mathbf{6} & \mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{5} & \mathbf{2}+\mathbf{3}+\mathbf{5} \\ \hline \end{array}

The fusion rules are invariant under the group generated by the following permutations:

{(2 3),(6 7)}\{(\mathbf{2} \ \mathbf{3}), (\mathbf{6} \ \mathbf{7})\}

The following particles form non-trivial sub fusion rings

Particles SubRing
{1,2}\{\mathbf{1},\mathbf{2}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,3}\{\mathbf{1},\mathbf{3}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,4}\{\mathbf{1},\mathbf{4}\} Z2: FR12,0\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}
{1,2,3,4}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} Z2×Z2: FR14,0\mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1}
{1,2,3,4,5}\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\} Rep(D4): FR15,0\left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1}

Quantum Dimensions

Particle Numeric Symbolic
1\mathbf{1} 1.1. 11
2\mathbf{2} 1.1. 11
3\mathbf{3} 1.1. 11
4\mathbf{4} 1.1. 11
5\mathbf{5} 2.2. 22
6\mathbf{6} 2.2. 22
7\mathbf{7} 2.2. 22
DFP2\mathcal{D}_{FP}^2 16.16. 1616

Characters

The symbolic character table is the following

12345761111222111120010101111111000111100011110i2i211110i2i2\begin{array}{|ccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \hline 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & -2 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 & 0 & i \sqrt{2} & -i \sqrt{2} \\ 1 & -1 & -1 & 1 & 0 & -i \sqrt{2} & i \sqrt{2} \\ \hline \end{array}

The numeric character table is the following

12345761.0001.0001.0001.0002.0002.0002.0001.0001.0001.0001.0002.000001.00001.00001.0001.0001.0001.0001.0001.0001.0000001.0001.0001.0001.0000001.0001.0001.0001.00001.414i1.414i1.0001.0001.0001.00001.414i1.414i\begin{array}{|rrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \hline 1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.000 \\ 1.000 & 1.000 & 1.000 & 1.000 & -2.000 & 0 & 0 \\ 1.000 & 0 & 1.000 & 0 & 1.000 & -1.000 & -1.000 \\ 1.000 & -1.000 & 1.000 & -1.000 & 0 & 0 & 0 \\ 1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & 1.414 i & -1.414 i \\ 1.000 & -1.000 & -1.000 & 1.000 & 0 & -1.414 i & 1.414 i \\ \hline \end{array}

Modular Data

This fusion ring does not have any matching SS-and TT-matrices.

Adjoint Subring

Particles 1,2,3,4,5\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, form the adjoint subring Rep(D4): FR15,0\left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1} .

The upper central series is the following: FR47,21,2,3,4,5Rep(D4)1,2,3,4Z2×Z21Trivial\text{FR}^{7,2}_{4} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5} }{\supset} \left.\text{Rep(}D_4\right) \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial}

Universal grading

Each particle can be graded as follows: deg(1)=1,deg(2)=1,deg(3)=1,deg(4)=1,deg(5)=1,deg(6)=2,deg(7)=2\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}', where the degrees form the group Z2\mathbb{Z}_2 with multiplication table:

1221\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}

Categorifications

Data

Download links for numeric data: