Rep ( S D 16 ) : FR 4 7 , 2 \text{Rep}(SD_{16}):\ \text{FR}^{7,2}_{4} Rep ( S D 1 6 ) : FR 4 7 , 2
S D 16 SD_{16} S D 1 6 GAP ID: [16,8]
Fusion Rules
1 2 3 4 5 6 7 2 1 4 3 5 7 6 3 4 1 2 5 7 6 4 3 2 1 5 6 7 5 5 5 5 1 + 2 + 3 + 4 6 + 7 6 + 7 6 7 7 6 6 + 7 2 + 3 + 5 1 + 4 + 5 7 6 6 7 6 + 7 1 + 4 + 5 2 + 3 + 5 \begin{array}{|lllllll|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
\mathbf{2} & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\
\mathbf{3} & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\
\mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
\mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\
\mathbf{6} & \mathbf{7} & \mathbf{7} & \mathbf{6} & \mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{4}+\mathbf{5} \\
\mathbf{7} & \mathbf{6} & \mathbf{6} & \mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{4}+\mathbf{5} & \mathbf{2}+\mathbf{3}+\mathbf{5} \\
\hline
\end{array} 1 2 3 4 5 6 7 2 1 4 3 5 7 6 3 4 1 2 5 7 6 4 3 2 1 5 6 7 5 5 5 5 1 + 2 + 3 + 4 6 + 7 6 + 7 6 7 7 6 6 + 7 2 + 3 + 5 1 + 4 + 5 7 6 6 7 6 + 7 1 + 4 + 5 2 + 3 + 5
The fusion rules are invariant under the group generated by the following permutations:
{ ( 2 3 ) , ( 6 7 ) } \{(\mathbf{2} \ \mathbf{3}), (\mathbf{6} \ \mathbf{7})\} { ( 2 3 ) , ( 6 7 ) }
The following particles form non-trivial sub fusion rings
Particles
SubRing
{ 1 , 2 } \{\mathbf{1},\mathbf{2}\} { 1 , 2 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 3 } \{\mathbf{1},\mathbf{3}\} { 1 , 3 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 4 } \{\mathbf{1},\mathbf{4}\} { 1 , 4 }
Z 2 : FR 1 2 , 0 \mathbb{Z}_2:\ \text{FR}^{2,0}_{1} Z 2 : FR 1 2 , 0
{ 1 , 2 , 3 , 4 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}\} { 1 , 2 , 3 , 4 }
Z 2 × Z 2 : FR 1 4 , 0 \mathbb{Z}_2\times \mathbb{Z}_2:\ \text{FR}^{4,0}_{1} Z 2 × Z 2 : FR 1 4 , 0
{ 1 , 2 , 3 , 4 , 5 } \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\} { 1 , 2 , 3 , 4 , 5 }
Rep( D 4 ) : FR 1 5 , 0 \left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1} Rep( D 4 ) : FR 1 5 , 0
Quantum Dimensions
Particle
Numeric
Symbolic
1 \mathbf{1} 1
1. 1. 1 .
1 1 1
2 \mathbf{2} 2
1. 1. 1 .
1 1 1
3 \mathbf{3} 3
1. 1. 1 .
1 1 1
4 \mathbf{4} 4
1. 1. 1 .
1 1 1
5 \mathbf{5} 5
2. 2. 2 .
2 2 2
6 \mathbf{6} 6
2. 2. 2 .
2 2 2
7 \mathbf{7} 7
2. 2. 2 .
2 2 2
D F P 2 \mathcal{D}_{FP}^2 D F P 2
16. 16. 1 6 .
16 16 1 6
Characters
The symbolic character table is the following
1 2 3 4 5 7 6 1 1 1 1 2 2 2 1 1 1 1 − 2 0 0 1 0 1 0 1 − 1 − 1 1 − 1 1 − 1 0 0 0 1 1 − 1 − 1 0 0 0 1 − 1 − 1 1 0 i 2 − i 2 1 − 1 − 1 1 0 − i 2 i 2 \begin{array}{|ccccccc|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\
\hline
1 & 1 & 1 & 1 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 & -2 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 & 0 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & i \sqrt{2} & -i \sqrt{2} \\
1 & -1 & -1 & 1 & 0 & -i \sqrt{2} & i \sqrt{2} \\
\hline
\end{array} 1 1 1 1 1 1 1 1 2 1 1 0 − 1 1 − 1 − 1 3 1 1 1 1 − 1 − 1 − 1 4 1 1 0 − 1 − 1 1 1 5 2 − 2 1 0 0 0 0 7 2 0 − 1 0 0 i 2 − i 2 6 2 0 − 1 0 0 − i 2 i 2
The numeric character table is the following
1 2 3 4 5 7 6 1.000 1.000 1.000 1.000 2.000 2.000 2.000 1.000 1.000 1.000 1.000 − 2.000 0 0 1.000 0 1.000 0 1.000 − 1.000 − 1.000 1.000 − 1.000 1.000 − 1.000 0 0 0 1.000 1.000 − 1.000 − 1.000 0 0 0 1.000 − 1.000 − 1.000 1.000 0 1.414 i − 1.414 i 1.000 − 1.000 − 1.000 1.000 0 − 1.414 i 1.414 i \begin{array}{|rrrrrrr|}
\hline
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\
\hline
1.000 & 1.000 & 1.000 & 1.000 & 2.000 & 2.000 & 2.000 \\
1.000 & 1.000 & 1.000 & 1.000 & -2.000 & 0 & 0 \\
1.000 & 0 & 1.000 & 0 & 1.000 & -1.000 & -1.000 \\
1.000 & -1.000 & 1.000 & -1.000 & 0 & 0 & 0 \\
1.000 & 1.000 & -1.000 & -1.000 & 0 & 0 & 0 \\
1.000 & -1.000 & -1.000 & 1.000 & 0 & 1.414 i & -1.414 i \\
1.000 & -1.000 & -1.000 & 1.000 & 0 & -1.414 i & 1.414 i \\
\hline
\end{array} 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 1 . 0 0 0 1 . 0 0 0 0 − 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 3 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 4 1 . 0 0 0 1 . 0 0 0 0 − 1 . 0 0 0 − 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 5 2 . 0 0 0 − 2 . 0 0 0 1 . 0 0 0 0 0 0 0 7 2 . 0 0 0 0 − 1 . 0 0 0 0 0 1 . 4 1 4 i − 1 . 4 1 4 i 6 2 . 0 0 0 0 − 1 . 0 0 0 0 0 − 1 . 4 1 4 i 1 . 4 1 4 i
Modular Data
This fusion ring does not have any matching S S S -and T T T -matrices.
Adjoint Subring
Particles 1 , 2 , 3 , 4 , 5 \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5} 1 , 2 , 3 , 4 , 5 , form the adjoint subring Rep( D 4 ) : FR 1 5 , 0 \left.\text{Rep(}D_4\right):\ \text{FR}^{5,0}_{1} Rep( D 4 ) : FR 1 5 , 0 .
The upper central series is the following:
FR 4 7 , 2 ⊃ 1 , 2 , 3 , 4 , 5 Rep( D 4 ) ⊃ 1 , 2 , 3 , 4 Z 2 × Z 2 ⊃ 1 Trivial \text{FR}^{7,2}_{4} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5} }{\supset} \left.\text{Rep(}D_4\right) \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4} }{\supset} \mathbb{Z}_2\times \mathbb{Z}_2 \underset{ \mathbf{1} }{\supset} \text{Trivial} FR 4 7 , 2 1 , 2 , 3 , 4 , 5 ⊃ Rep( D 4 ) 1 , 2 , 3 , 4 ⊃ Z 2 × Z 2 1 ⊃ Trivial
Universal grading
Each particle can be graded as follows: deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 2 ′ \text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}' deg ( 1 ) = 1 ′ , deg ( 2 ) = 1 ′ , deg ( 3 ) = 1 ′ , deg ( 4 ) = 1 ′ , deg ( 5 ) = 1 ′ , deg ( 6 ) = 2 ′ , deg ( 7 ) = 2 ′ , where the degrees form the group Z 2 \mathbb{Z}_2 Z 2 with multiplication table:
1 ′ 2 ′ 2 ′ 1 ′ \begin{array}{|ll|}
\hline
\mathbf{1}' & \mathbf{2}' \\
\mathbf{2}' & \mathbf{1}' \\
\hline
\end{array} 1 ′ 2 ′ 2 ′ 1 ′
Categorifications
Data
Download links for numeric data: