FR107,2
Fusion Rules
123456721435673421657431265755661+2+5+73+4+6+75+6+766553+4+6+71+2+5+75+6+777775+6+75+6+71+2+3+4+5+6
The fusion rules are invariant under the group generated by the following permutations:
{(3 4)}
The following elements form non-trivial sub fusion rings
Elements |
SubRing |
{1,2} |
Z2: FR12,0 |
{1,2,3,4} |
Z4: FR14,2 |
Frobenius-Perron Dimensions
Particle |
Numeric |
Symbolic |
1 |
1. |
1 |
2 |
1. |
1 |
3 |
1. |
1 |
4 |
1. |
1 |
5 |
2.81361 |
Root[x3−2x2−3x+2,3] |
6 |
2.81361 |
Root[x3−2x2−3x+2,3] |
7 |
3.10278 |
Root[x3−2x2−6x+8,3] |
DFP2 |
29.46 |
2Root[x3−2x2−3x+2,3]2+Root[x3−2x2−6x+8,3]2+4 |
Characters
The symbolic character table is the following
11111111211111−1−14111−1−1i−i3111−1−1−ii5Root[x3−2x2−3x+2,3]Root[x3−2x2−3x+2,2]Root[x3−2x2−3x+2,1]−12006Root[x3−2x2−3x+2,3]Root[x3−2x2−3x+2,2]Root[x3−2x2−3x+2,1]1−2007Root[x3−2x2−6x+8,3]Root[x3−2x2−6x+8,1]Root[x3−2x2−6x+8,2]0000
The numeric character table is the following
11.0001.0001.0001.0001.0001.0001.00021.0001.0001.0001.0001.000−1.000−1.00041.0001.0001.000−1.000−1.0001.000i−1.000i31.0001.0001.000−1.000−1.000−1.000i1.000i52.8140.5293−1.343−1.0002.0000062.8140.5293−1.3431.000−2.0000073.103−2.2491.1460000
Representations of SL2(Z)
This fusion ring does not provide any representations of SL2(Z).
Adjoint Subring
The adjoint subring is the ring itself.
The upper central series is trivial.
Universal grading
This fusion ring allows only the trivial grading.
Categorifications
This fusion ring has no categorifications because of the extended cyclotomic criterion.
Data
Download links for numeric data: