\(\text{FR}^{7,0}_{8}\)

Fusion Rules

\[\begin{array}{|lllllll|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \mathbf{3} & \mathbf{3} & \mathbf{1}+\mathbf{2}+\mathbf{5} & \mathbf{4}+\mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\ \mathbf{4} & \mathbf{4} & \mathbf{4}+\mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{3} & \mathbf{3}+\mathbf{5} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\ \mathbf{5} & \mathbf{5} & \mathbf{3}+\mathbf{4} & \mathbf{3}+\mathbf{5} & \mathbf{1}+\mathbf{2}+\mathbf{4} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} \\ \mathbf{6} & \mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5} \\ \mathbf{7} & \mathbf{6} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{6}+\mathbf{7} & \mathbf{2}+\mathbf{3}+\mathbf{4}+\mathbf{5} & \mathbf{1}+\mathbf{3}+\mathbf{4}+\mathbf{5} \\ \hline \end{array}\]

The fusion rules are invariant under the group generated by the following permutations:

\[\{(\mathbf{6} \ \mathbf{7}), (\mathbf{3} \ \mathbf{4} \ \mathbf{5})\}\]

The following particles form non-trivial sub fusion rings

Particles SubRing
\(\{\mathbf{1},\mathbf{2}\}\) \(\mathbb{Z}_2:\ \text{FR}^{2,0}_{1}\)
\(\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\}\) \(\left.\text{Rep(}D_7\right):\ \text{FR}^{5,0}_{4}\)

Quantum Dimensions

Particle Numeric Symbolic
\(\mathbf{1}\) \(1.\) \(1\)
\(\mathbf{2}\) \(1.\) \(1\)
\(\mathbf{3}\) \(2.\) \(2\)
\(\mathbf{4}\) \(2.\) \(2\)
\(\mathbf{5}\) \(2.\) \(2\)
\(\mathbf{6}\) \(2.64575\) \(\sqrt{7}\)
\(\mathbf{7}\) \(2.64575\) \(\sqrt{7}\)
\(\mathcal{D}_{FP}^2\) \(28.\) \(28\)

Characters

The symbolic character table is the following

\[\begin{array}{|ccccccc|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \hline 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 1 & 1 & \text{Root}\left[x^3+x^2-2 x-1,3\right] & \text{Root}\left[x^3+x^2-2 x-1,1\right] & \text{Root}\left[x^3+x^2-2 x-1,2\right] & 0 & 0 \\ 1 & 1 & \text{Root}\left[x^3+x^2-2 x-1,2\right] & \text{Root}\left[x^3+x^2-2 x-1,3\right] & \text{Root}\left[x^3+x^2-2 x-1,1\right] & 0 & 0 \\ 1 & 1 & \text{Root}\left[x^3+x^2-2 x-1,1\right] & \text{Root}\left[x^3+x^2-2 x-1,2\right] & \text{Root}\left[x^3+x^2-2 x-1,3\right] & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & 0 & -1 & 1 \\ \hline \end{array}\]

The numeric character table is the following

\[\begin{array}{|rrrrrrr|} \hline \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{6} \\ \hline 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & 2.646 & 2.646 \\ 1.000 & 1.000 & 2.000 & 2.000 & 2.000 & -2.646 & -2.646 \\ 1.000 & 1.000 & 1.247 & -1.802 & -0.4450 & 0 & 0 \\ 1.000 & 1.000 & -0.4450 & 1.247 & -1.802 & 0 & 0 \\ 1.000 & 1.000 & -1.802 & -0.4450 & 1.247 & 0 & 0 \\ 1.000 & -1.000 & 0 & 0 & 0 & 1.000 & -1.000 \\ 1.000 & -1.000 & 0 & 0 & 0 & -1.000 & 1.000 \\ \hline \end{array}\]

Modular Data

The matching \(S\)-matrices and twist factors are the following

\(S\)-matrix Twist factors
\(\frac{1}{2 \sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 0 & 0 \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & -\sqrt{7} & \sqrt{7} \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & \sqrt{7} & -\sqrt{7} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,-\frac{3}{7},\frac{1}{7},\frac{2}{7},-\frac{1}{8},\frac{3}{8}\right) \\\left(0,0,-\frac{3}{7},\frac{1}{7},\frac{2}{7},\frac{3}{8},-\frac{1}{8}\right) \\\left(0,0,\frac{3}{7},-\frac{1}{7},-\frac{2}{7},\frac{1}{8},-\frac{3}{8}\right) \\\left(0,0,\frac{3}{7},-\frac{1}{7},-\frac{2}{7},-\frac{3}{8},\frac{1}{8}\right)\end{array}\)
\(\frac{1}{2 \sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 0 & 0 \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & \sqrt{7} & -\sqrt{7} \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & -\sqrt{7} & \sqrt{7} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{3}{7},-\frac{1}{7},-\frac{2}{7},\frac{3}{8},-\frac{1}{8}\right) \\\left(0,0,\frac{3}{7},-\frac{1}{7},-\frac{2}{7},-\frac{1}{8},\frac{3}{8}\right) \\\left(0,0,-\frac{3}{7},\frac{1}{7},\frac{2}{7},\frac{1}{8},-\frac{3}{8}\right) \\\left(0,0,-\frac{3}{7},\frac{1}{7},\frac{2}{7},-\frac{3}{8},\frac{1}{8}\right)\end{array}\)
\(\frac{1}{2 \sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 0 & 0 \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & -\sqrt{7} & \sqrt{7} \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & \sqrt{7} & -\sqrt{7} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{1}{7},\frac{2}{7},-\frac{3}{7},-\frac{1}{8},\frac{3}{8}\right) \\\left(0,0,\frac{1}{7},\frac{2}{7},-\frac{3}{7},\frac{3}{8},-\frac{1}{8}\right) \\\left(0,0,-\frac{1}{7},-\frac{2}{7},\frac{3}{7},\frac{1}{8},-\frac{3}{8}\right) \\\left(0,0,-\frac{1}{7},-\frac{2}{7},\frac{3}{7},-\frac{3}{8},\frac{1}{8}\right)\end{array}\)
\(\frac{1}{2 \sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 0 & 0 \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & \sqrt{7} & -\sqrt{7} \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & -\sqrt{7} & \sqrt{7} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,-\frac{1}{7},-\frac{2}{7},\frac{3}{7},\frac{3}{8},-\frac{1}{8}\right) \\\left(0,0,-\frac{1}{7},-\frac{2}{7},\frac{3}{7},-\frac{1}{8},\frac{3}{8}\right) \\\left(0,0,\frac{1}{7},\frac{2}{7},-\frac{3}{7},\frac{1}{8},-\frac{3}{8}\right) \\\left(0,0,\frac{1}{7},\frac{2}{7},-\frac{3}{7},-\frac{3}{8},\frac{1}{8}\right)\end{array}\)
\(\frac{1}{2 \sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 0 & 0 \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & -\sqrt{7} & \sqrt{7} \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & \sqrt{7} & -\sqrt{7} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,\frac{2}{7},-\frac{3}{7},\frac{1}{7},-\frac{1}{8},\frac{3}{8}\right) \\\left(0,0,\frac{2}{7},-\frac{3}{7},\frac{1}{7},\frac{3}{8},-\frac{1}{8}\right) \\\left(0,0,-\frac{2}{7},\frac{3}{7},-\frac{1}{7},\frac{1}{8},-\frac{3}{8}\right) \\\left(0,0,-\frac{2}{7},\frac{3}{7},-\frac{1}{7},-\frac{3}{8},\frac{1}{8}\right)\end{array}\)
\(\frac{1}{2 \sqrt{7}}\left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & 2 & \sqrt{7} & \sqrt{7} \\ 1 & 1 & 2 & 2 & 2 & -\sqrt{7} & -\sqrt{7} \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 0 & 0 \\ 2 & 2 & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,5\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,1\right] & 2 \sqrt{7} \text{Root}\left[343 x^6-245 x^4+42 x^2-1,3\right] & 0 & 0 \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & \sqrt{7} & -\sqrt{7} \\ \sqrt{7} & -\sqrt{7} & 0 & 0 & 0 & -\sqrt{7} & \sqrt{7} \\\end{array}\right)\) \(\begin{array}{l}\left(0,0,-\frac{2}{7},\frac{3}{7},-\frac{1}{7},\frac{3}{8},-\frac{1}{8}\right) \\\left(0,0,-\frac{2}{7},\frac{3}{7},-\frac{1}{7},-\frac{1}{8},\frac{3}{8}\right) \\\left(0,0,\frac{2}{7},-\frac{3}{7},\frac{1}{7},\frac{1}{8},-\frac{3}{8}\right) \\\left(0,0,\frac{2}{7},-\frac{3}{7},\frac{1}{7},-\frac{3}{8},\frac{1}{8}\right)\end{array}\)

Adjoint Subring

Particles \(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}\), form the adjoint subring \(\left.\text{Rep(}D_7\right):\ \text{FR}^{5,0}_{4}\) .

The upper central series is the following: \(\text{FR}^{7,0}_{8} \underset{ \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5} }{\supset} \left.\text{Rep(}D_7\right)\)

Universal grading

Each particle can be graded as follows: \(\text{deg}(\mathbf{1}) = \mathbf{1}', \text{deg}(\mathbf{2}) = \mathbf{1}', \text{deg}(\mathbf{3}) = \mathbf{1}', \text{deg}(\mathbf{4}) = \mathbf{1}', \text{deg}(\mathbf{5}) = \mathbf{1}', \text{deg}(\mathbf{6}) = \mathbf{2}', \text{deg}(\mathbf{7}) = \mathbf{2}'\), where the degrees form the group \(\mathbb{Z}_2\) with multiplication table:

\[\begin{array}{|ll|} \hline \mathbf{1}' & \mathbf{2}' \\ \mathbf{2}' & \mathbf{1}' \\ \hline \end{array}\]

Categorifications

Data

Download links for numeric data: